Relaxation and Strain-Hardening Relationships in Highly Rejuvenated Metallic Glasses
Abstract
:1. Introduction
2. Simulation Details
2.1. Samples Preparation
2.2. Deformation Tests
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, W.H.; Dong, C.; Shek, C. Bulk metallic glasses. Mater. Sci. Eng. R Rep. 2004, 44, 45–89. [Google Scholar] [CrossRef]
- Greer, A.L. Metallic glasses. In Physical Metallurgy; Elsevier: Amsterdam, The Netherlands, 2014; pp. 305–385. [Google Scholar]
- Löffler, J.F. Bulk metallic glasses. Intermetallics 2003, 11, 529–540. [Google Scholar] [CrossRef]
- Yu, H.B.; Richert, R.; Samwer, K. Structural rearrangements governing Johari-Goldstein relaxations in metallic glasses. Sci. Adv. 2017, 3, e1701577. [Google Scholar] [CrossRef] [Green Version]
- Gallino, I.; Busch, R. Relaxation pathways in metallic glasses. JOM 2017, 69, 2171–2177. [Google Scholar] [CrossRef]
- Saida, J.; Yamada, R.; Wakeda, M. Recovery of less relaxed state in Zr-Al-Ni-Cu bulk metallic glass annealed above glass transition temperature. Appl. Phys. Lett. 2013, 103, 221910. [Google Scholar] [CrossRef]
- Sun, Y.; Concustell, A.; Greer, A.L. Thermomechanical processing of metallic glasses: Extending the range of the glassy state. Nat. Rev. Mater. 2016, 1, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Küchemann, S.; Derlet, P.M.; Liu, C.; Rosenthal, D.; Sparks, G.; Larson, W.S.; Maaß, R. Energy storage in metallic glasses via flash annealing. Adv. Funct. Mater. 2018, 28, 1805385. [Google Scholar] [CrossRef]
- Wakeda, M.; Saida, J.; Li, J.; Ogata, S. Controlled rejuvenation of amorphous metals with thermal processing. Sci. Rep. 2015, 5, 10545. [Google Scholar] [CrossRef] [Green Version]
- Ketov, S.; Sun, Y.; Nachum, S.; Lu, Z.; Checchi, A.; Beraldin, A.; Bai, H.; Wang, W.; Louzguine-Luzgin, D.; Carpenter, M.; et al. Rejuvenation of metallic glasses by non-affine thermal strain. Nature 2015, 524, 200–203. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Wang, Y.; Guo, Q.; Zhang, D.; Greer, A.; Li, Y. Extreme rejuvenation and softening in a bulk metallic glass. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Park, K.W.; Lee, C.M.; Wakeda, M.; Shibutani, Y.; Falk, M.L.; Lee, J.C. Elastostatically induced structural disordering in amorphous alloys. Acta Mater. 2008, 56, 5440–5450. [Google Scholar] [CrossRef]
- Concustell, A.; Méar, F.; Surinach, S.; Baró, M.; Greer, A. Structural relaxation and rejuvenation in a metallic glass induced by shot-peening. Philos. Mag. Lett. 2009, 89, 831–840. [Google Scholar] [CrossRef]
- Dmowski, W.; Yokoyama, Y.; Chuang, A.; Ren, Y.; Umemoto, M.; Tsuchiya, K.; Inoue, A.; Egami, T. Structural rejuvenation in a bulk metallic glass induced by severe plastic deformation. Acta Mater. 2010, 58, 429–438. [Google Scholar] [CrossRef]
- Ding, G.; Li, C.; Zaccone, A.; Wang, W.; Lei, H.; Jiang, F.; Ling, Z.; Jiang, M. Ultrafast extreme rejuvenation of metallic glasses by shock compression. Sci. Adv. 2019, 5, eaaw6249. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.; Huang, L.; Shi, Y. Suppression of shear banding in amorphous ZrCuAl nanopillars by irradiation. J. Appl. Phys. 2013, 113, 083514. [Google Scholar] [CrossRef]
- Fan, Y.; Iwashita, T.; Egami, T. How thermally activated deformation starts in metallic glass. Nat. Commun. 2014, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Saida, J.; Yamada, R.; Wakeda, M.; Ogata, S. Thermal rejuvenation in metallic glasses. Sci. Technol. Adv. MaTerialS 2017, 18, 152–162. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Chan, K.; Zhao, L.; Pan, S.; Qi, L.; Wang, L.; Liu, R. Rejuvenation by weakening the medium range order in Zr46Cu46Al8 metallic glass with pressure preloading: A molecular dynamics simulation study. Mater. Des. 2018, 158, 248–255. [Google Scholar] [CrossRef]
- Ding, J.; Cheng, Y.Q.; Sheng, H.; Asta, M.; Ritchie, R.O.; Ma, E. Universal structural parameter to quantitatively predict metallic glass properties. Nat. Commun. 2016, 7, 1–10. [Google Scholar] [CrossRef]
- Pan, J.; Ivanov, Y.P.; Zhou, W.; Li, Y.; Greer, A. Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass. Nature 2020, 578, 559–562. [Google Scholar] [CrossRef]
- Tang, B.; Erb, U.; Brooks, I. Strain hardening in polycrystalline and nanocrystalline nickel. In Advanced Materials Research; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2012; Volume 409, pp. 550–554. [Google Scholar]
- Yoo, B.G.; Park, K.W.; Lee, J.C.; Ramamurty, U.; Jang, J.i. Role of free volume in strain softening of as-cast and annealed bulk metallic glass. J. Mater. Res. 2009, 24, 1405–1416. [Google Scholar] [CrossRef] [Green Version]
- Jang, D.; Greer, J.R. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat. Mater. 2010, 9, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Cheng, Y.Q.; Shan, Z.W.; Li, J.; Wang, C.C.; Han, X.D.; Sun, J.; Ma, E. Approaching the ideal elastic limit of metallic glasses. Nat. Commun. 2012, 3, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Pan, J.; Li, Y.; Schuh, C.A. Densification and strain hardening of a metallic glass under tension at room temperature. Phys. Rev. Lett. 2013, 111, 135504. [Google Scholar] [CrossRef]
- Shang, B.; Wang, W.; Greer, A.L.; Guan, P. Atomistic modelling of thermal-cycling rejuvenation in metallic glasses. Acta Mater. 2021, 213, 116952. [Google Scholar] [CrossRef]
- Yuan, X.; Şopu, D.; Spieckermann, F.; Song, K.; Ketov, S.; Prashanth, K.; Eckert, J. Maximizing the degree of rejuvenation in metallic glasses. Scr. Mater. 2022, 212, 114575. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Mendelev, M.; Sordelet, D.; Kramer, M. Using atomistic computer simulations to analyze X-ray diffraction data from metallic glasses. J. Appl. Phys. 2007, 102, 043501. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Brostow, W.; Chybicki, M.; Laskowski, R.; Rybicki, J. Voronoi polyhedra and Delaunay simplexes in the structural analysis of molecular-dynamics-simulated materials. Phys. Rev. B 1998, 57, 13448. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.K.; Li, M. Free volume evolution in metallic glasses subjected to mechanical deformation. Mater. Trans. 2007, 48, 1816–1821. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, Z.H.; Barazandeh, H.; Mostafavi, S.M.; Ershov, K.; Goncharov, A.; Kuznetsov, A.S.; Kravchenko, O.D.; Zhu, Y. identification of rejuvenation and relaxation regions in a Zr-based metallic glass induced by laser shock peening. J. Mater. Res. Technol. 2021, 11, 2015–2020. [Google Scholar] [CrossRef]
- Greer, A.; Sun, Y. Stored energy in metallic glasses due to strains within the elastic limit. Philos. Mag. 2016, 96, 1643–1663. [Google Scholar] [CrossRef] [Green Version]
- Şopu, D.; Scudino, S.; Bian, X.; Gammer, C.; Eckert, J. Atomic-scale origin of shear band multiplication in heterogeneous metallic glasses. Scr. Mater. 2020, 178, 57–61. [Google Scholar] [CrossRef]
- Sopu, D.; Foroughi, A.; Stoica, M.; Eckert, J. Brittle-to-ductile transition in metallic glass nanowires. Nano Lett. 2016, 16, 4467–4471. [Google Scholar] [CrossRef]
- Şopu, D.; Yuan, X.; Moitzi, F.; Spieckermann, F.; Bian, X.; Eckert, J. From elastic excitations to macroscopic plasticity in metallic glasses. Appl. Mater. Today 2021, 22, 100958. [Google Scholar] [CrossRef]
- Rodney, D.; Schuh, C. Distribution of thermally activated plastic events in a flowing glass. Phys. Rev. Lett. 2009, 102, 235503. [Google Scholar] [CrossRef]
- Zink, M.; Samwer, K.; Johnson, W.; Mayr, S. Validity of temperature and time equivalence in metallic glasses during shear deformation. Phys. Rev. B 2006, 74, 012201. [Google Scholar] [CrossRef] [Green Version]
- Swayamjyoti, S.; Löffler, J.F.; Derlet, P. Local structural excitations in model glasses. Phys. Rev. B 2014, 89, 224201. [Google Scholar] [CrossRef] [Green Version]
- Teichler, H. Structural dynamics on the μs scale in molecular-dynamics simulated, deeply undercooled, glass-forming Ni0.5Zr0.5. J. Non-Cryst. Solids 2001, 293, 339–344. [Google Scholar] [CrossRef]
- Meng, F.; Tsuchiya, K.; Seiichiro, I.; Yokoyama, Y. Reversible transition of deformation mode by structural rejuvenation and relaxation in bulk metallic glass. Appl. Phys. Lett. 2012, 101, 121914. [Google Scholar] [CrossRef]
- Qiang, J.; Tsuchiya, K. Composition dependence of mechanically-induced structural rejuvenation in Zr-Cu-Al-Ni metallic glasses. J. Alloy. Compd. 2017, 712, 250–255. [Google Scholar] [CrossRef]
- Louzguine-Luzgin, D.; Ketov, S.; Wang, Z.; Miyama, M.; Tsarkov, A.; Churyumov, A.Y. Plastic deformation studies of Zr-based bulk metallic glassy samples with a low aspect ratio. Mater. Sci. Eng. A 2014, 616, 288–296. [Google Scholar] [CrossRef]
- Haruyama, O.; Kisara, K.; Yamashita, A.; Kogure, K.; Yokoyama, Y.; Sugiyama, K. Characterization of free volume in cold-rolled Zr55Cu30Ni5Al10 bulk metallic glasses. Acta Mater. 2013, 61, 3224–3232. [Google Scholar] [CrossRef]
- Yuan, X.; Şopu, D.; Eckert, J. Origin of strain hardening in monolithic metallic glasses. Phys. Rev. B 2021, 103, L140107. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Şopu, D.; Song, K.; Eckert, J. Relaxation and Strain-Hardening Relationships in Highly Rejuvenated Metallic Glasses. Materials 2022, 15, 1702. https://doi.org/10.3390/ma15051702
Yuan X, Şopu D, Song K, Eckert J. Relaxation and Strain-Hardening Relationships in Highly Rejuvenated Metallic Glasses. Materials. 2022; 15(5):1702. https://doi.org/10.3390/ma15051702
Chicago/Turabian StyleYuan, Xudong, Daniel Şopu, Kaikai Song, and Jürgen Eckert. 2022. "Relaxation and Strain-Hardening Relationships in Highly Rejuvenated Metallic Glasses" Materials 15, no. 5: 1702. https://doi.org/10.3390/ma15051702
APA StyleYuan, X., Şopu, D., Song, K., & Eckert, J. (2022). Relaxation and Strain-Hardening Relationships in Highly Rejuvenated Metallic Glasses. Materials, 15(5), 1702. https://doi.org/10.3390/ma15051702