Use of Fumed Silica Nanostructured Additives in Selective Laser Melting and Fabrication of Steel Matrix Nanocomposites
Abstract
:1. Introduction
2. Materials & Methods
2.1. Preparation of Powder
2.2. Selective Laser Melting
2.3. Density
2.4. Surface Roughness
2.5. Grinding and Polishing
2.6. Microstructure Analysis
2.7. Microhardness Testing
2.8. Tensile Test
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Takezawa, A.; Koizumi, Y.; Kobashi, M. High-stiffness and strength porous maraging steel via topology optimization and selective laser melting. Addit. Manuf. 2017, 18, 194–202. [Google Scholar] [CrossRef]
- Frazier, W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Wu, C.L.; Zhang, S.; Zhang, C.H.; Zhang, J.B.; Liu, Y.; Chen, J. Effects of sic content on phase evolution and corrosion behavior of sic-reinforced 316l stainless steel matrix composites by laser melting deposition. Opt. Laser Technol. 2019, 115, 134–139. [Google Scholar] [CrossRef]
- Tomus, D.; Tian, Y.; Rometsch, P.A.; Heilmaier, M.; Wu, X. Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of hastelloy-x parts produced by selective laser melting. Mater. Sci. Eng. A 2016, 667, 42–53. [Google Scholar] [CrossRef]
- Nickels, L. Am and aerospace: An ideal combination. Met. Powder Rep. 2015, 70, 300–303. [Google Scholar] [CrossRef]
- Wang, H. Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells. J. Power Sources 2003, 115, 243–251. [Google Scholar] [CrossRef]
- Hanzl, P.; Zetek, M.; Bakša, T.; Kroupa, T. The influence of processing parameters on the mechanical properties of slm parts. Procedia Eng. 2015, 100, 1405–1413. [Google Scholar] [CrossRef] [Green Version]
- Boldridge, D. Morphological characterization of fumed silica aggregates. Aerosol Sci. Technol. 2010, 44, 182–186. [Google Scholar] [CrossRef]
- Rawers, J.; Croydon, F.; Krabbe, R.; Duttlinger, N. Tensile characteristics of nitrogen enhanced powder injection moulded 316l stainless steel. Powder Metall. 2013, 39, 125–129. [Google Scholar] [CrossRef]
- Lei, Y.B.; Wang, Z.B.; Xu, J.L.; Lu, K. Simultaneous enhancement of stress- and strain-controlled fatigue properties in 316l stainless steel with gradient nanostructure. Acta Mater. 2019, 168, 133–142. [Google Scholar] [CrossRef]
- AlMangour, B.; Grzesiak, D.; Yang, J.-M. In-situ formation of novel tic-particle-reinforced 316l stainless steel bulk-form composites by selective laser melting. J. Alloys Compd. 2017, 706, 409–418. [Google Scholar] [CrossRef]
- Nahme, H.; Lach, E.; Tarrant, A. Mechanical property under high dynamic loading and microstructure evaluation of a tib2 particle-reinforced stainless steel. J. Mater. Sci. 2009, 44, 463–468. [Google Scholar] [CrossRef]
- Bondioli, F.; Dorigato, A.; Fabbri, P.; Messori, M.; Pegoretti, A. Improving the creep stability of high-density polyethylene with acicular titania nanoparticles. J. Appl. Polym. Sci. 2009, 112, 1045–1055. [Google Scholar] [CrossRef]
- Bondioli, F.; Dorigato, A.; Fabbri, P.; Messori, M.; Pegoretti, A. High-density polyethylene reinforced with submicron titania particles. Polym. Eng. Sci. 2008, 48, 448–457. [Google Scholar] [CrossRef]
- Cai, L.F.; Lin, Z.Y.; Qian, H. Dispersion of nano-silica in monomer casting nylon6 and its effect on the structure and properties of composites. Express Polym. Lett. 2010, 4, 397–403. [Google Scholar] [CrossRef]
- Mandalia, T.; Bergaya, F. Organo clay mineral–melted polyolefin nanocomposites effect of surfactant/cec ratio. J. Phys. Chem. Solids 2006, 67, 836–845. [Google Scholar] [CrossRef]
- Pegoretti, A.; Dorigato, A.; Penati, A. Tensile mechanical response of polyethylene–clay nanocomposites. Express Polym. Lett. 2007, 1, 123–131. [Google Scholar] [CrossRef]
- Starkova, O.; Yang, J.; Zhang, Z. Application of time–stress superposition to nonlinear creep of polyamide 66 filled with nanoparticles of various sizes. Compos. Sci. Technol. 2007, 67, 2691–2698. [Google Scholar] [CrossRef] [Green Version]
- Dorigato, A.; Pegoretti, A.; Penati, A. Linear low-density polyethylene/silica micro- and nanocomposites: Dynamic rheological measurements and modelling. Express Polym. Lett. 2010, 4, 115–129. [Google Scholar] [CrossRef]
- Shi, J.; Wang, Y. Development of metal matrix composites by laser-assisted additive manufacturing technologies: A review. J. Mater. Sci. 2020, 55, 9883–9917. [Google Scholar] [CrossRef]
- Dadbakhsh, S.; Mertens, R.; Hao, L.; Van Humbeeck, J.; Kruth, J.P. Selective laser melting to manufacture “in situ” metal matrix composites: A review. Adv. Eng. Mater. 2019, 21, 1801244. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Qian, B.; Xu, Y.; Liu, Z.; Zhang, J.; Xuan, F. Additive manufacturing of ultrafine-grained austenitic stainless steel matrix composite via vanadium carbide reinforcement addition and selective laser melting: Formation mechanism and strengthening effect. Mater. Sci. Eng. A 2019, 745, 495–508. [Google Scholar] [CrossRef]
- Song, B.; Wang, Z.; Yan, Q.; Zhang, Y.; Zhang, J.; Cai, C.; Wei, Q.; Shi, Y. Integral method of preparation and fabrication of metal matrix composite: Selective laser melting of in-situ nano/submicro-sized carbides reinforced iron matrix composites. Mater. Sci. Eng. A 2017, 707, 478–487. [Google Scholar] [CrossRef]
- Mortensen, A.; Llorca, J. Metal matrix composites. Annu. Rev. Mater. Res. 2010, 40, 243–270. [Google Scholar] [CrossRef]
- Moya, J.; Lopezesteban, S.; Pecharroman, C. The challenge of ceramic/metal microcomposites and nanocomposites. Prog. Mater. Sci. 2007, 52, 1017–1090. [Google Scholar] [CrossRef]
- Tjong, S.C. Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv. Eng. Mater. 2007, 9, 639–652. [Google Scholar] [CrossRef]
- Kang, Y.-C.; Chan, S.L.-I. Tensile properties of nanometric al2o3 particulate-reinforced aluminum matrix composites. Mater. Chem. Phys. 2004, 85, 438–443. [Google Scholar] [CrossRef]
- Kühn, U.; Mattern, N.; Gebert, A.; Kusy, M.; Boström, M.; Siegel, U.; Schultz, L. Nanostructured zr- and ti-based composite materials with high strength and enhanced plasticity. J. Appl. Phys. 2005, 98, 54307. [Google Scholar] [CrossRef]
- Liu, L.H.; Yang, C.; Wang, F.; Qu, S.G.; Li, X.Q.; Zhang, W.W.; Li, Y.Y.; Zhang, L.C. Ultrafine grained ti-based composites with ultrahigh strength and ductility achieved by equiaxing microstructure. Mater. Des. 2015, 79, 1–5. [Google Scholar] [CrossRef]
- Zhang, L.-C.; Xu, J.; Eckert, J. Thermal stability and crystallization kinetics of mechanically alloyed tic∕ti-based metallic glass matrix composite. J. Appl. Phys. 2006, 100, 33514. [Google Scholar] [CrossRef] [Green Version]
- Attar, H.; Bönisch, M.; Calin, M.; Zhang, L.C.; Zhuravleva, K.; Funk, A.; Scudino, S.; Yang, C.; Eckert, J. Comparative study of microstructures and mechanical properties of in situ ti–tib composites produced by selective laser melting, powder metallurgy, and casting technologies. J. Mater. Res. 2014, 29, 1941–1950. [Google Scholar] [CrossRef]
- Gu, D.; Shen, Y. Direct laser sintered wc-10co/cu nanocomposites. Appl. Surf. Sci. 2008, 254, 3971–3978. [Google Scholar] [CrossRef]
- AlMangour, B.; Baek, M.-S.; Grzesiak, D.; Lee, K.-A. Strengthening of stainless steel by titanium carbide addition and grain refinement during selective laser melting. Mater. Sci. Eng. A 2018, 712, 812–818. [Google Scholar] [CrossRef]
- Wang, K.; Wang, D.; Han, F. Effect of crystalline grain structures on the mechanical properties of twinning-induced plasticity steel. Acta Mech. Sin. 2015, 32, 181–187. [Google Scholar] [CrossRef]
Sample | SS316L | AEROSIL® R 812 S | AEROSIL® 200 |
---|---|---|---|
Density (g/cm3) | 7.722 ± 0.012 | 7.718 ± 0.011 | 7.718 ± 0.005 |
Sample | SS316L | SS316L with AEROSIL® R 812 S | SS316L with AEROSIL® 200 | |||
---|---|---|---|---|---|---|
Surface | Top | Side | Top | Side | Top | Side |
Ra (µm) | 15.6 ± 1.5 | 16.6 ± 1.4 | 14.0 ± 1.7 | 13.8 ± 0.7 | 17.6 ± 7.0 | 15 ± 1.5 |
Specimen | SS316L | SS316L with AEROSIL® R 812 S | SS316L with AEROSIL® 200 |
---|---|---|---|
Young’s modulus (GPa) | 147.91 ± 5.67 | 143.14 ± 8.71 | 81.84 ± 6.25 |
Ultimate tensile strength (MPa) | 491.76 ± 11.05 | 494.78 ±16.54 | 485.05 ± 14.56 |
Yield strength (MPa) | 363.4 ± 8.22 | 358.9 ± 12.63 | 283.7 ± 10.29 |
Elongation (%) | 38.14 ± 3.86 | 35.18 ± 5.23 | 37.47 ± 2.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koh, H.K.; Moo, J.G.S.; Sing, S.L.; Yeong, W.Y. Use of Fumed Silica Nanostructured Additives in Selective Laser Melting and Fabrication of Steel Matrix Nanocomposites. Materials 2022, 15, 1869. https://doi.org/10.3390/ma15051869
Koh HK, Moo JGS, Sing SL, Yeong WY. Use of Fumed Silica Nanostructured Additives in Selective Laser Melting and Fabrication of Steel Matrix Nanocomposites. Materials. 2022; 15(5):1869. https://doi.org/10.3390/ma15051869
Chicago/Turabian StyleKoh, Hwee Kang, James Guo Sheng Moo, Swee Leong Sing, and Wai Yee Yeong. 2022. "Use of Fumed Silica Nanostructured Additives in Selective Laser Melting and Fabrication of Steel Matrix Nanocomposites" Materials 15, no. 5: 1869. https://doi.org/10.3390/ma15051869
APA StyleKoh, H. K., Moo, J. G. S., Sing, S. L., & Yeong, W. Y. (2022). Use of Fumed Silica Nanostructured Additives in Selective Laser Melting and Fabrication of Steel Matrix Nanocomposites. Materials, 15(5), 1869. https://doi.org/10.3390/ma15051869