Effect of Isothermal Conditions on the Charge Trapping/Detrapping Parameters in e-Beam Irradiated Thermally Aged XLPE Insulation in SEM
Abstract
:1. Introduction
2. Fundamental aspects
2.1. Electron Beam Irradiation of Dielectric Materials in SEM
2.2. Trapped Charge Measurement with SEM Device
3. Materials and Methods
3.1. Materials and Samples Preparation
3.2. Methods
3.2.1. Thermal Aging Test
3.2.2. Adapted Device in SEM and Measurements
4. Experimental Results and Discussions
4.1. Effect of Isothermal Conditions on the Currents
4.1.1. Fresh Samples
4.1.2. Aged Samples at 140 °C
4.2. Effect of Isothermal Conditions on the Trapped Charge Dynamics
4.2.1. Fresh Samples
4.2.2. Aged Samples at 140 °C
5. Discussion
- The temperature has numerous effects on space charge dynamics, such as enhancing ionic dissociation of polar cross-linking by-products and increasing of electrons energy, enabling them to be more easily detrapped, which enhances their mobility and conductivity [15].
- The secondary electron emission (SEE), which reflects the structure of conduction bands, was highly dependent on the temperature even far below the melting point. The large temperature dependence of the conduction bands in polyethylene is ascribed to the increase in specific volume of the amorphous parts by heating (decrease in the material crystallinity) [43].
5.1. Isothermal Conditions Effect on Iimax and ILS
5.2. Isothermal Conditions Effect on Qtmax and tc
5.3. Isothermal Conditions Effect on Electrostatic Influence Factor K
5.4. Isothermal Conditions Effect on Total Electron Emission Yield σ
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knies, G. Clean Power from Deserts: The DESERTEC Concept for Energy, Water and Climate Security; White Book: Hamburg, Germany, 2007. [Google Scholar]
- Astrom, U.; Westman, B.; Lescale, V.; Asplund, G. Power transmission with HVDC at voltages above 600 kV. In Proceedings of the IEEE Power Engineering Society Inaugural Conference and Exposition in Africa, Durban, South Africa, 11–15 July 2005; pp. 44–50. [Google Scholar]
- Li, W.W.; Li, J.Y.; Yin, G.L.; Li, S.T.; Zhao, J.K.; Ouyang, B.H.; Ohki, Y. Frequency dependence of breakdown performance of XLPE with different Artificial defects. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1351–1359. [Google Scholar] [CrossRef]
- Li, J.Y.; Li, H.; Zhou, F.S.; Wang, S.H.; Zhao, J.K.; Ouyang, B.H. Copper-catalyzed oxidation caused by copper-rich impurities in cross-linked polyethylene cable insulation. J. Mater. Sci. Mater. Electron. 2016, 27, 806–810. [Google Scholar] [CrossRef]
- Mazzanti, A.G.; Marzinotto, M. Extruded Cables for High Voltage Direct Current Transmission: Advances in Research and Development; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; p. 100. [Google Scholar]
- Delpino, S.; Fabiani, D.; Montanari, G.C.; Laurent, C.; Teyssedre, G.; Morshuis, P.H.F.; Bodega, R.; Dissado, L.A. Polymeric HVDC cable design and space charge accumulation. Part 2: Insulation interfaces. IEEE Electr. Insul. Mag. 2008, 24, 14–24. [Google Scholar] [CrossRef]
- Damamme, G.; Le Gressus, C.; De Reggi, A. Space charge characterization for the 21th century. IEEE Trans. Dielectr. Electr. Insul. 1997, 4, 558–584. [Google Scholar] [CrossRef]
- Bartnikas, R. Performance characteristics of dielectric in the presence of space charge. IEEE Trans. Dielectr. Electr. Insul. 1997, 4, 544–557. [Google Scholar] [CrossRef]
- Zhou, T.C.; Chen, G.; Liao, R.J.; Xu, Z.Q. Charge trapping and detrapping in polymeric materials: Trapping parameters. J. Appl. Phys. 2011, 110, 043724. [Google Scholar] [CrossRef] [Green Version]
- Choo, W.; Chen, G.; Swingler, S.G. Electric field in polymeric cable due to space charge accumulation under DC and temperature gradient. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 596–606. [Google Scholar] [CrossRef]
- Chen, X.; Dai, C.; Yu, L.; Jiang, C.; Zhou, H.; Tanaka, Y. Effect of thermal ageing on charge dynamics and material properties of 320 kV HVDC XLPE. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1797–1804. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.; Yu, L.; Li, Y.; Gao, L. Effect of thermal stress on the space charge distribution of 160 kV HVDC cable insulation material. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1355–1364. [Google Scholar] [CrossRef]
- Ouyang, B.; Li, H.; Zhang, X.; Wang, S.; Li, J. The role of micro-structure changes on space charge distribution of XLPE during thermo-oxidative ageing. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3849–3859. [Google Scholar] [CrossRef]
- Li, W.W.; Li, J.Y.; Wang, X.; Li, S.T.; Chen, G.; Zhao, J.K.; Ouyang, B.H. Physicochemical origin of space charge dynamics for aged XLPE cable insulation. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 809–820. [Google Scholar] [CrossRef]
- Chong, Y.L.; Chen, G.; Ho, Y.F.F. Temperature effect on space charge dynamics in XLPE insulation. IEEE Trans. Dielectr. Electr. Insul. 2007, 14, 65–76. [Google Scholar] [CrossRef]
- Li, G.; Wang, J.; Han, W.; Wei, Y.; Li, S. Influence of temperature on charge accumulation in low density polyethylene based on depolarization current and space charge decay. Polymers 2019, 11, 587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boukezzi, L.; Rondot, S.; Jbara, O.; Boubakeur, A. A time-resolved current method and TSC under vacuum conditions of SEM: Trapping and detrapping processes in thermal aged XLPE insulation cables. Nucl. Instrum. Methods Phys. Res. B 2017, 394, 126–133. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Wu, K.; Peng, Z.R.; Cheng, Y.H.; Tu, D.M. Space charge measurement in LDPE films under temperature gradient and DC stress. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1796–1805. [Google Scholar] [CrossRef]
- Sessler, G.M. Charge distribution and transport in polymers. IEEE Trans. Dielectr. Electr. Insul. 1997, 4, 614–628. [Google Scholar] [CrossRef]
- Jbara, O.; Fakhfakh, S.; Belhaj, M.; Rondot, S.; Hadjadj, A.; Patat, J.M. Charging effects of PET under electron beam irradiation in a SEM. J. Phys. Appl. Phys. 2008, 41, 245504. [Google Scholar] [CrossRef]
- Ben Ammar, L.; Fakhfakh, S.; Jbara, O.; Rondot, S. Effect of nanoclay concentration level on the electrical properties of polypropylene under electron irradiation in a SEM. J. Microsc. 2017, 265, 322–334. [Google Scholar] [CrossRef]
- Fakhfakh, S.; Jbara, O.; Belhaj, M.; Fakhfakh, Z.; Kallel, A.; Rau, E.I. An experimental approach for dynamic investigation of the trapping properties of glass-ceramic under electron beam irradiation from a scanning electron microscope. Eur. Phys. J. Appl. Phys. 2003, 21, 137–146. [Google Scholar] [CrossRef]
- Boukezzi, L.; Rondot, S.; Jbara, O.; Boubakeur, A. Study of thermal aging effects on the conduction and trapping of charges in XLPE cable insulations under electron beam irradiation. Rad. Phys. Chem. 2018, 149, 110–117. [Google Scholar] [CrossRef]
- Kanaya, K.A.; Okayama, S. Penetration and energy-loss theory of electrons in solid targets. J. Phys. Appl. Phys. 1972, 5, 43–58. [Google Scholar] [CrossRef]
- Fakhfakh, S.; Jbara, O.; Rondot, S.; Hadjadj, A.; Fakhfakh, Z. Experimental characterization of charge distribution and transport in electron irradiated PMMA. J. Non-Cryst. Sol. 2012, 358, 1157–1164. [Google Scholar] [CrossRef]
- Taktak, S.; Fakhfakh, S.; Rondot, S.; Tara, A.; Jbara, O. Behavior under electron irradiation of two clay-based polymer nanocomposites PPgMA/OMMT and PBS/OMMT. Mater. Chem. Phys. 2022, 275, 125230. [Google Scholar]
- Fakhfakh, S.; Elsafi, B.; Fakhfakh, Z.; Jbara, O. Study of temperature effects on the conduction and trapping of charges in the alkali-silicate glass under electron beam irradiation. Appl. Surf. Sci. 2012, 258, 2324–2331. [Google Scholar] [CrossRef]
- Elsafi, B.; Fakhfakh, S.; Fakhfakh, Z.; Jbara, O. Temperature effects on the behavior of PET submitted to electron beam irradiation in a SEM. Nucl. Instrum. Methods Phys. Res. B 2011, 269, 2715–2720. [Google Scholar] [CrossRef]
- Ben Ammar, L.; Fakhfakh, S.; Jbara, O.; Rondot, S.; Hadjadj, A. Study of temperature effects on the electrical behavior of polypropylene-clay nanocomposites submitted to electron beam irradiation in a SEM. Micron 2017, 98, 39–48. [Google Scholar] [CrossRef]
- Fakhfakh, S.; Jbara, O.; Rondot, S.; Hadjadj, A.; Patat, J.M.; Fakhfakh, Z. Analysis of electrical charging and discharging kinetics of different glasses under electron irradiation in a scanning electron microscope. J. Appl. Phys. 2010, 108, 093705. [Google Scholar] [CrossRef]
- Boukezzi, L.; Boubakeur, A.; Laurent, C.; Lallouani, M. Observations on structural changes under thermal aging of cross-linked polyethylene used as power cables insulation. Iran. Polym. J. 2008, 17, 611–624. [Google Scholar]
- Meunier, M.; Quirke, N.; Aslanides, A. Molecular modeling of electron traps in polymer insulators: Chemical defects and impurities. J. Chem. Phys. 2001, 115, 2876–2881. [Google Scholar] [CrossRef]
- Li, J.Y.; Zhou, F.; Min, D.; Li, S.; Xia, R. The energy distribution of trapped charges in polymers based on isothermal surface potential decay model. IEEE Trans. Dielectr. Electr. Insul. 2015, 3, 1723–1732. [Google Scholar] [CrossRef]
- Watson, P.K. The transport and trapping of electrons in polymers. IEEE Trans. Dielectr. Electr. Insul. 1995, 2, 915–924. [Google Scholar] [CrossRef]
- Yan, Z.; Yang, K.; Zhang, Y.; Wang, S.; Li, J. Crosslinking dependence of trap distribution and breakdown performance of cross-linked polyethylene. J. Mater. Sci. Mater. Electron. 2019, 30, 20605–20613. [Google Scholar] [CrossRef]
- Han, Y.; Li, S.; Min, D. Trap energy distribution in polymeric insulating materials through surface potential decay method. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 639–648. [Google Scholar] [CrossRef]
- Boukezzi, L.; Boubakeur, A. Effect of thermal aging on the electrical characteristics of XLPE for HV cables. Trans. Electr. Electro. Mater. 2018, 19, 341–355. [Google Scholar] [CrossRef]
- Mecheri, Y.; Boukezzi, L.; Boubakeur, A.; Lallouani, M. Dielectric and mechanical behaviour of cross-linked polyethylene under thermal aging. In Proceedings of the Annual Report of Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Victoria, BC, Canada, 15–18 October 2000; pp. 560–563. [Google Scholar]
- Boukezzi, L.; Boubakeur, A.; Laurent, C.; Lallouani, M. DSC study of artificial thermal aging of XLPE insulation cables. In Proceedings of the 9th IEEE International Conference on Solid Dielectrics (ICSD), Winchester, UK, 8–13 July 2007; pp. 146–149. [Google Scholar]
- Boukezzi, L.; Nedjar, M.; Mokhnache, L.; Lallouani, M.; Boubakeur, A. Thermal aging of cross-linked polyethylene. Ann. Chimie Sci. Matériaux. 2006, 31, 561–569. [Google Scholar] [CrossRef]
- Seggern, H.V. Detection of surface and bulk traps. J. Appl. Phys. 1981, 52, 4086–4089. [Google Scholar] [CrossRef]
- Meunier, M.; Quirke, N. Molecular modeling of electron trapping in polymer insulators. J. Chem. Phys. 2000, 113, 369–376. [Google Scholar] [CrossRef]
- Ueno, N.; Seki, K.; Sugita, K.; Inokuchi, H. Nature of the temperature dependence of conduction bands in polyethylene. Phys. Rev. B 1991, 43, 2384–2390. [Google Scholar] [CrossRef]
- Andrews, T.; Hampton, R.N.; Smedberg, A.; Wald, D.; Waschk, V.; Weissenberg, W. The role of degassing in XLPE power cable manufacture. IEEE Electr. Insul. Mag. 2006, 22, 5–16. [Google Scholar] [CrossRef]
- Cazaux, J. Some considerations on the secondary electron emission, δ, from e-irradiated insulators. J. Appl. Phys. 1999, 85, 1137–1147. [Google Scholar] [CrossRef]
- Cazaux, J. About the secondary electron emission yield, δ, from e-irradiated insulators. Mikrochim. Act. 2000, 132, 173–177. [Google Scholar] [CrossRef]
- Cazaux, J. E-induced secondary electron emission yield of insulators and charging effects. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2006, 244, 307–322. [Google Scholar] [CrossRef]
Temperature (°C) | Unaged Material | Aged Material at 140 °C | ||
---|---|---|---|---|
σ0 | σs | σ0 | σs | |
80 °C | - | - | ~1 | 0.8322 |
90 °C | 0.9693 | 0.9979 | ~1 | 0.8192 |
120 °C | 0.9012 | 0.9889 | ~1 | 0.8060 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukezzi, L.; Rondot, S.; Jbara, O.; Ghoneim, S.S.M.; Boubakeur, A.; Abdelwahab, S.A.M. Effect of Isothermal Conditions on the Charge Trapping/Detrapping Parameters in e-Beam Irradiated Thermally Aged XLPE Insulation in SEM. Materials 2022, 15, 1918. https://doi.org/10.3390/ma15051918
Boukezzi L, Rondot S, Jbara O, Ghoneim SSM, Boubakeur A, Abdelwahab SAM. Effect of Isothermal Conditions on the Charge Trapping/Detrapping Parameters in e-Beam Irradiated Thermally Aged XLPE Insulation in SEM. Materials. 2022; 15(5):1918. https://doi.org/10.3390/ma15051918
Chicago/Turabian StyleBoukezzi, Larbi, Sébastien Rondot, Omar Jbara, Sherif S. M. Ghoneim, Ahmed Boubakeur, and Saad A. Mohamed Abdelwahab. 2022. "Effect of Isothermal Conditions on the Charge Trapping/Detrapping Parameters in e-Beam Irradiated Thermally Aged XLPE Insulation in SEM" Materials 15, no. 5: 1918. https://doi.org/10.3390/ma15051918
APA StyleBoukezzi, L., Rondot, S., Jbara, O., Ghoneim, S. S. M., Boubakeur, A., & Abdelwahab, S. A. M. (2022). Effect of Isothermal Conditions on the Charge Trapping/Detrapping Parameters in e-Beam Irradiated Thermally Aged XLPE Insulation in SEM. Materials, 15(5), 1918. https://doi.org/10.3390/ma15051918