Classifying High Strength Concrete Mix Design Methods Using Decision Trees
Abstract
:1. Introduction
1.1. Machine Learning Applied to Concrete Technology
1.2. Decision Trees
2. Materials and Methods
2.1. Dataset
2.1.1. ACI 211.4R-08
2.1.2. Aïtcin Method
2.1.3. Modified DOE
2.2. Visualizing the Dataset
2.3. Features
2.4. Coding Environment
2.5. Preprocessing of Dataset
2.6. Splitting the Dataset
2.7. Model Choices
2.8. Methods of Evaluating Classifier’s Performance
2.9. Feature Importance
2.9.1. Principal Component Analysis (PCA)
2.9.2. Minimum Redundancy Maximum Relevance (MRMR)
3. Results and Discussion
Limitations
4. Conclusions
- Machine learning, specifically decision tree models were trained to classify high strength concrete mix design methods based on concrete mix proportions with high accuracy. It was shown that knowledge of the basic amounts of the basic ingredients of high strength concrete mix is enough for the model to accurately determine the mix method by which it was designed.
- Feature importance analyses demonstrated that the amount of cement and water in the concrete mix are the most important predictors of the used mix design method.
- In this work, a novel high-accuracy model for determining the mix design method, based only on mix proportion, was presented.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alonzo, O.; Barringer, W.L.; Barton, S.G.; Bell, L.W.; Bennett, J.E.; Boyle, M.; Burg, G.R.; Carrasquillo, R.L.; Cook, J.E.; Cook, R.A. Guide for selecting proportions for high-strength concrete with portland cement and fly ash. ACI Mater. J. 1993, 90, 272–283. [Google Scholar]
- Aïtcin, P.-C. High Performance Concrete; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Hansen, T. Modified DOE mix design method for high volume fly ash concretes and controlled low strength concretes. Mag. Concr. Res. 1992, 44, 39–45. [Google Scholar] [CrossRef]
- Yeh, I.-C. Modeling of strength of high-performance concrete using artificial neural networks. Cem. Concr. Res. 1998, 28, 1797–1808. [Google Scholar] [CrossRef]
- Lee, S.-C. Prediction of concrete strength using artificial neural networks. Eng. Struct. 2003, 25, 849–857. [Google Scholar] [CrossRef]
- Bui, D.-K.; Nguyen, T.; Chou, J.-S.; Nguyen-Xuan, H.; Ngo, T.D. A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete. Constr. Build. Mater. 2018, 180, 320–333. [Google Scholar] [CrossRef]
- Ziolkowski, P.; Niedostatkiewicz, M. Machine learning techniques in concrete mix design. Materials 2019, 12, 1256. [Google Scholar] [CrossRef] [Green Version]
- Deng, F.; He, Y.; Zhou, S.; Yu, Y.; Cheng, H.; Wu, X. Compressive strength prediction of recycled concrete based on deep learning. Constr. Build. Mater. 2018, 175, 562–569. [Google Scholar] [CrossRef]
- Erdal, H.; Erdal, M.; Simsek, O.; Erdal, H.I. Prediction of concrete compressive strength using non-destructive test results. Comp. Concr. 2018, 21, 407–417. [Google Scholar]
- Williams, K.C.; Partheeban, P. An experimental and numerical approach in strength prediction of reclaimed rubber concrete. Adv. Concr. Constr. 2018, 6, 87. [Google Scholar]
- Kasperkiewicz, J.; Racz, J.; Dubrawski, A. HPC strength prediction using artificial neural network. J. Comput. Civ. Eng. 1995, 9, 279–284. [Google Scholar] [CrossRef]
- Dias, W.; Pooliyadda, S. Neural networks for predicting properties of concretes with admixtures. Constr. Build. Mater. 2001, 15, 371–379. [Google Scholar] [CrossRef]
- Öztaş, A.; Pala, M.; Özbay, E.A.; Kanca, E.; Caglar, N.; Bhatti, M.A. Predicting the compressive strength and slump of high strength concrete using neural network. Constr. Build. Mater. 2006, 20, 769–775. [Google Scholar] [CrossRef]
- Ghafari, E.; Bandarabadi, M.; Costa, H.; Júlio, E. Prediction of fresh and hardened state properties of UHPC: Comparative study of statistical mixture design and an artificial neural network model. J. Mater. Civ. Eng. 2015, 27, 04015017. [Google Scholar] [CrossRef]
- Topcu, I.B.; Sarıdemir, M. Prediction of properties of waste AAC aggregate concrete using artificial neural network. Comput. Mater. Sci. 2007, 41, 117–125. [Google Scholar] [CrossRef]
- Alshihri, M.M.; Azmy, A.M.; El-Bisy, M.S. Neural networks for predicting compressive strength of structural light weight concrete. Constr. Build. Mater. 2009, 23, 2214–2219. [Google Scholar] [CrossRef]
- Almohammed, F.; Sihag, P.; Sammen, S.S.; Ostrowski, K.A.; Singh, K.; Prasad, C.; Zajdel, P. Assessment of Soft Computing Techniques for the Prediction of Compressive Strength of Bacterial Concrete. Materials 2022, 15, 489. [Google Scholar] [CrossRef]
- Nafees, A.; Javed, M.F.; Khan, S.; Nazir, K.; Farooq, F.; Aslam, F.; Musarat, M.A.; Vatin, N.I. Predictive Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Artificial Intelligence Approaches: MLPNN, ANFIS, and GEP. Materials 2021, 14, 7531. [Google Scholar] [CrossRef]
- Siddique, R.; Aggarwal, P.; Aggarwal, Y. Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks. Adv. Eng. Softw. 2011, 42, 780–786. [Google Scholar] [CrossRef]
- Chou, J.-S.; Chiu, C.-K.; Farfoura, M.; Al-Taharwa, I. Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques. J. Comp. Civ. Eng. 2011, 25, 242–253. [Google Scholar] [CrossRef]
- Han, Q.; Gui, C.; Xu, J.; Lacidogna, G. A generalized method to predict the compressive strength of high-performance concrete by improved random forest algorithm. Constr. Build. Mater. 2019, 226, 734–742. [Google Scholar] [CrossRef]
- Mansouri, I.; Ozbakkaloglu, T.; Kisi, O.; Xie, T. Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques. Mater. Struct. 2016, 49, 4319–4334. [Google Scholar] [CrossRef]
- Deshpande, N.; Londhe, S.; Kulkarni, S. Modeling compressive strength of recycled aggregate concrete by Artificial Neural Network, Model Tree and Non-linear Regression. Int. J. Sustain. Built Environ. 2014, 3, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Deepa, C.; SathiyaKumari, K.; Sudha, V.P. Prediction of the compressive strength of high performance concrete mix using tree based modeling. Int. J. Comput. Appl. 2010, 6, 18–24. [Google Scholar] [CrossRef]
- Ahmad, A.; Farooq, F.; Niewiadomski, P.; Ostrowski, K.; Akbar, A.; Aslam, F.; Alyousef, R. Prediction of compressive strength of fly ash based concrete using individual and ensemble algorithm. Materials 2021, 14, 794. [Google Scholar] [CrossRef]
- Huang, X.; Wasouf, M.; Sresakoolchai, J.; Kaewunruen, S. Prediction of healing performance of autogenous healing concrete using machine learning. Materials 2021, 14, 4068. [Google Scholar] [CrossRef]
- Song, H.; Ahmad, A.; Ostrowski, K.A.; Dudek, M. Analyzing the compressive strength of ceramic waste-based concrete using experiment and artificial neural network (ANN) approach. Materials 2021, 14, 4518. [Google Scholar] [CrossRef]
- Shang, M.; Li, H.; Ahmad, A.; Ahmad, W.; Ostrowski, K.A.; Aslam, F.; Majka, T.M. Predicting the Mechanical Properties of RCA-Based Concrete Using Supervised Machine Learning Algorithms. Materials 2022, 15, 647. [Google Scholar] [CrossRef]
- Akpinar, P.; Khashman, A. Intelligent classification system for concrete compressive strength. Procedia Comput. Sci. 2017, 120, 712–718. [Google Scholar] [CrossRef]
- Erdal, H.I. Two-level and hybrid ensembles of decision trees for high performance concrete compressive strength prediction. Eng. Appl. Artif. Intell. 2013, 26, 1689–1697. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Song, Y.; Lu, Y. Decision tree methods: Applications for classification and prediction. Shanghai Arch. Psychiatry 2015, 27, 130–135. [Google Scholar]
- Quinlan, J.R. C4.5: Programs for Machine Learning; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Loh, W.-Y.; Shih, Y.-S. Split selection methods for classification trees. Stat. Sin. 1997, 7, 815–840. [Google Scholar]
- Abdul Qader, M.; Ibrahim, A.; Alaidaros, A.B.; Abdulkareem, A.K.; Alwuayl, A.; Alsaluli, A.; Alghamdi, S. Investigating trends and costs associated with designing concrete mixes using different methods by computer programs. Adv. Civ. Eng. 2022. [Google Scholar] [CrossRef]
- Gini, C. Variabilita e mutabilita: Contributo allo studio delle relazioni statistiche. In Studi Economico-Giurdici; Facolta di Giurisprudenza della, R., Ed.; Universita di Cagliari: Bologna, Italy, 1912; Volume 3. [Google Scholar]
- Wall, M.E.; Rechtsteiner, A.; Rocha, L.M. Singular value decomposition and principal component analysis. In A Practical Approach to Microarray Data Analysis; Springer: Berlin/Heidelberg, Germany, 2003; pp. 91–109. [Google Scholar]
- Peng, H.; Ding, C.; Long, F. Minimum redundancy-maximum relevance feature selection. IEEE Intell. Syst. 2005, 20, 70–71. [Google Scholar]
Mix Proportions | Manual | Program | Variation | |
---|---|---|---|---|
Numeric | % | |||
Cement (kg/m3) | 334.8 | 337.94 | −3.14 | −0.93 |
Water (kg/m3) | 188.92 | 188.89 | 0.03 | 0.02 |
FA (kg/m3) | 613.4 | 610.09 | 3.31 | 0.54 |
CA (kg/m3) | 1072.5 | 1072.5 | 0 | 0.00 |
Fly ash (kg/m3) | 63.77 | 64.37 | −0.6 | −0.93 |
Superplasticizer (kg/m3) | 2.39 | 2.41 | −0.02 | −0.83 |
Mix Proportions | Manual | Program | Variation | |
---|---|---|---|---|
Numeric | % | |||
Cement (kg/m3) | 439.015 | 442 | −2.99 | −0.68 |
Water (kg/m3) | 118.114 | 117.98 | 0.13 | 0.11 |
FA (kg/m3) | 654.836 | 658.61 | −3.77 | −0.58 |
CA (kg/m3) | 1089 | 1089 | 0 | 0 |
Silica Fume (kg/m3) | 25.824 | 26 | −0.18 | −0.68 |
Fly ash (kg/m3) | 51.649 | 52 | −0.35 | −0.68 |
Superplasticizer (kg/m3) | 7.65 | 7.7 | −0.05 | −0.65 |
Mix Proportions | Manual | Program | Variation | |
---|---|---|---|---|
Numeric | % | |||
Cement (kg/m3) | 617.28 | 614.49 | 2.79 | 0.45 |
Water (kg/m3) | 170.26 | 170.31 | −0.05 | −0.03 |
FA (kg/m3) | 518.66 | 517.61 | 1.05 | 0.2 |
CA (kg/m3) | 1098.54 | 1106.28 | −7.74 | −0.7 |
Superplasticizer (kg/m3) | 6.688 | 6.66 | 0.03 | 0.42 |
Model | Training Accuracy | Testing Accuracy |
---|---|---|
Decision trees: Fine | 98.2% | 98.7% |
Decision trees: Medium | 97.9% | 97.8% |
Decision trees: Coarse | 90.5% | 88.3% |
Model | Training Accuracy | Testing Accuracy |
---|---|---|
Reduced-dimensionality fine decision tree | 86.3% | 86.5% |
Reduced-dimensionality medium decision tree | 85.1% | 85.3% |
Reduced-dimensionality coarse decision tree | 81.3% | 81.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, S.J. Classifying High Strength Concrete Mix Design Methods Using Decision Trees. Materials 2022, 15, 1950. https://doi.org/10.3390/ma15051950
Alghamdi SJ. Classifying High Strength Concrete Mix Design Methods Using Decision Trees. Materials. 2022; 15(5):1950. https://doi.org/10.3390/ma15051950
Chicago/Turabian StyleAlghamdi, Saleh J. 2022. "Classifying High Strength Concrete Mix Design Methods Using Decision Trees" Materials 15, no. 5: 1950. https://doi.org/10.3390/ma15051950
APA StyleAlghamdi, S. J. (2022). Classifying High Strength Concrete Mix Design Methods Using Decision Trees. Materials, 15(5), 1950. https://doi.org/10.3390/ma15051950