Fe3O4@PDA@PEI Core-Shell Microspheres as a Novel Magnetic Sorbent for the Rapid and Broad-Spectrum Separation of Bacteria in Liquid Phase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Bacteria Samples
2.3. Synthesis and Characterization of Fe3O4@PDA@PEI Magnetic Beads (MBs)
2.4. Enrichment of E. coli and Bacillus Subtilis Using Fe3O4@PDA@PEI MBs
2.5. ATP-BL Detection
3. Results
3.1. Characterization of the Composite
3.1.1. TEM and VSM Analysis
3.1.2. Size and Zeta Potential Analysis
3.1.3. FT-IR Analysis
3.1.4. Isoelectric Point Determination of Fe3O4@PDA@PEI
3.2. Interaction between Surface-Modified Fe3O4@PDA@PEI MBs and Bacteria
3.2.1. SEM Analysis
3.2.2. The Influence of the Amount of Fe3O4@PDA@PEI MBs and the Action Time on the Binding Effect
3.2.3. Effect of Buffer Environment on Binding
3.2.4. Effect of Bacterial Activity on Binding
3.2.5. Effect of Ionic Strength on Binding
3.3. Isolation and Enrichment Efficiency of Bacteria by Fe3O4@PDA@PEI MBs Verified by ATP Bioluminescence Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Cui, Q.; Yao, C.; Li, S.; Zhang, P.; Sun, H.; Lv, F.; Liu, L.; Li, L.; Wang, S. Conjugated Polyelectrolyte-Silver Nanostructure Pair for Detection and Killing of Bacteria. Adv. Mater. Technol. 2017, 2, 1700033. [Google Scholar] [CrossRef]
- Ryrso, C.K.; Dungu, A.M.; Hegelund, M.H.; Jensen, A.V.; Sejdic, A.; Faurholt-Jepsen, D.; Krogh-Madsen, R.; Lindegaard, B. Body composition, physical capacity, and immuno-metabolic profile in community-acquired pneumonia caused by COVID-19, influenza, and bacteria: A prospective cohort study. Int. J. Obes. 2022. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- WHO. International Push to Improve Food Safety. International Food Safety Conference Opens with Call for Greater Global Cooperation. Available online: https://www.who.int/news/item/12-02-2019-international-push-to-improve-food-safety (accessed on 12 February 2022).
- Cffa, B.; Mha, B.; Mra, B.; Chab, C.; Dgjla, B. Monitoring of hospital sewage shows both promise and limitations as an early-warning system for carbapenemase-producing Enterobacterales in a low-prevalence setting. Water Res. 2021, 200, 117261. [Google Scholar]
- Nakar, A.; Schmilovitch, Z.; Vaizel-Ohayon, D.; Kroupitski, Y.; Borisover, M.; Saldinger, S.S. Quantification of bacteria in water using PLS analysis of emission spectra of fluorescence and excitation-emission matrices. Water Res. 2020, 169, 115197. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cai, R.; Gao, Z.; Yuan, Y.; Yue, T. Immunomagnetic separation: An effective pretreatment technology for isolation and enrichment in food microorganisms detection. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3802–3824. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Hu, F.; Zhang, X.; Ren, C.; Huang, F.; Liu, J.; Zhang, Y.; Yang, L.; Gao, Y.; Liu, B.; et al. Combating bacterial infection by in situ self-assembly of AIEgen-peptide conjugate. Biomaterials 2020, 244, 119972. [Google Scholar] [CrossRef] [PubMed]
- Elise, D.S.; Julia, B.; Lise, B. Biosensing platforms for Vibrio bacteria detection based on whole cell and nucleic acid analysis: A review. Talanta 2018, 190, 410–422. [Google Scholar]
- Feng, X.; Meng, X.; Xiao, F.; Aguilar, Z.P.; Xu, H. Vancomycin-dendrimer based multivalent magnetic separation nanoplatforms combined with multiplex quantitative PCR assay for detecting pathogenic bacteria in human blood. Talanta 2020, 225, 121953. [Google Scholar] [CrossRef]
- Salman, A.; Carney, H.; Bateson, S.; Ali, Z. Shunting microfluidic PCR device for rapid bacterial detection. Talanta 2019, 207, 120303. [Google Scholar] [CrossRef]
- Cheng, D.; Yu, M.; Fu, F.; Han, W.; Li, G.; Xie, J.; Song, Y.; Swihart, M.T.; Song, E. Dual Recognition Strategy for Specific and Sensitive Detection of Bacteria Using Aptamer-Coated Magnetic Beads and Antibiotic-Capped Gold Nanoclusters. Anal. Chem. 2016, 88, 820–825. [Google Scholar] [CrossRef]
- Herzig, G.P.D.; Aydin, M.; Dunigan, S.; Shah, P.; Jeong, K.C.; Park, S.H.; Ricke, S.C.; Ahn, S. Magnetic Bead-Based Immunoassay Coupled with Tyramide Signal Amplification for Detection of Salmonella in Foods. J. Food Saf. 2016, 36, 383–391. [Google Scholar] [CrossRef]
- Gao, X.; Yao, X.; Zhong, Z.; Jia, L. Rapid and sensitive detection of Staphylococcus aureus assisted by polydopamine modified magnetic nanoparticles. Talanta 2018, 186, 147–153. [Google Scholar] [CrossRef]
- Bao, J.; Li, H.; Xu, Y.; Chen, S.; Wang, Z.; Jiang, C.; Li, H.; Wei, Z.; Sun, S.; Zhao, W.; et al. Multi-functional polyethersulfone nanofibrous membranes with ultra-high adsorption capacity and ultra-fast removal rates for dyes and bacteria. J. Mater. Sci. Technol. 2021, 78, 131–143. [Google Scholar] [CrossRef]
- Ahmed, R.; Vaishampayan, A.; Achazi, K.; Grohmann, E.; Haag, R.; Wagner, O. Graphene-Based Bacterial Filtration via Electrostatic Adsorption. Adv. Mater. Interfaces 2022, 9, 2101917. [Google Scholar] [CrossRef]
- Zhu, X.; Qiu, H.; Chen, P. A modified graphitic carbon nitride (MCN)/Fe3O4 composite as a super electromagnetic wave absorber. J. Mater. Chem. A 2021, 9, 23643–23650. [Google Scholar] [CrossRef]
- Li, H.; Kou, B.; Yuan, Y.; Chai, Y.; Yuan, R. Porous Fe3O4@COF-Immobilized gold nanoparticles with excellent catalytic performance for sensitive electrochemical detection of ATP. Biosens. Bioelectron. 2021, 197, 113758. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, L.; Yang, B.; Jia, B.; Yang, J.; Su, X. Enzyme immobilization on amino-functionalized Fe3O4@SiO2 via electrostatic interaction with enhancing biocatalysis in sludge dewatering. Chem. Eng. J. 2022, 427, 131976. [Google Scholar] [CrossRef]
- Wei, F.; Cui, X.; Wang, Z.; Dong, C.; Li, J.; Han, X. Recoverable peroxidase-like Fe3O4@MoS2-Ag nanozyme with enhanced antibacterial ability-ScienceDirect. Chem. Eng. J. 2021, 408, 127240. [Google Scholar] [CrossRef]
- Wang, T.; Yang, W.L.; Hong, Y.; Hou, Y.L. Magnetic nanoparticles grafted with amino-riched dendrimer as magnetic flocculant for efficient harvesting of oleaginous microalgae. Chem. Eng. J. 2016, 297, 304–314. [Google Scholar] [CrossRef]
- Liu, S.; Yu, B.; Wang, S.; Shen, Y.; Cong, H. Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Adv. Colloid Interface Sci. 2020, 281, 102165. [Google Scholar] [CrossRef]
- Jiang, J.; Sun, X.; Li, Y.; Deng, C.; Duan, G. Facile synthesis of Fe3O4@PDA core-shell microspheres functionalized with various metal ions: A systematic comparison of commonly-used metal ions for IMAC enrichment. Talanta 2018, 178, 600–607. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Y.; Zou, M. Advances on application of superparamagnetic nanoparticle in biochemical separation and analysis. J. Instr. Anal. 2013, 32, 1270–1276. [Google Scholar]
- Jin, Y.Y.; Geng, X.D.; Huang, J.Y. Preparation and bacteria capture research of cross-linked magnetic chitosan microsphere. Food Sci. Technol. 2013, 38, 266–269. [Google Scholar]
- Huang, Y.F. Functional Magnetic Particles for Bacteria Capture and On-Line Preconcentration of Metal Ions. Ph.D. Thesis, Nankai University, Tianjin, China, 2010. [Google Scholar]
- Kell, A.J.; Stewart, G.; Ryan, S.; Peytavi, R.; Boissinot, M.; Huletsky, A.; Bergeron, M.G.; Simard, B. Vancomycin-modified nanoparticles for efficient targeting and preconcentration of Gram-positive and Gram-negative bacteria. ACS Nano 2008, 2, 1777–1788. [Google Scholar] [CrossRef]
- Jin, Q.; Fan, X.J.; Shen, S. Study on the adsorpsion capacity of lab made magnetic particles to the common foodborne pathogentic bacteria. Mod. Prev. Med. 2006, 33, 4–5. [Google Scholar]
- Qianqian, L.I.; Chen, P. Comparison of different magnetic beads for adsorption of pathogenic bacteria. J. Hyg. Res. 2012, 41, 293–297. [Google Scholar]
- Wilson, W.W.; Wade, M.M.; Holman, S.C.; Champlin, F.R. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J. Microbiol. Methods 2001, 43, 153–164. [Google Scholar] [CrossRef]
- Delparastan, P.; Malollari, K.G.; Lee, H.; Messersmith, P.B. Direct Evidence for the Polymeric Nature of Polydopamine. Angew. Chem. Int. Ed. Engl. 2019, 58, 1077–1082. [Google Scholar] [CrossRef]
- Samyn, P. Polydopamine and Cellulose: Two Biomaterials with Excellent Compatibility and Applicability. Polym. Rev. 2021, 61, 814–865. [Google Scholar] [CrossRef]
- Li, N.; Chen, J.; Shi, Y.P. Magnetic polyethyleneimine functionalized reduced graphene oxide as a novel magnetic sorbent for the separation of polar non-steroidal anti-inflammatory drugs in waters. Talanta 2019, 191, 526–534. [Google Scholar] [CrossRef]
- Qiu, J.; Zhou, Y.; Chen, H.; Lin, J.M. Immunomagnetic separation and rapid detection of bacteria using bioluminescence and microfluidics. Talanta 2009, 79, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Mehdinia, A.; Khodaee, N.; Jabbari, A. Fabrication of graphene/Fe3O4@polythiophene nanocomposite and its application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Anal. Chim. Acta 2015, 868, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ye, F.; Liu, H.; Jiang, X.; Zhao, Q.; Ai, G.; Shen, L.; Feng, X.; Yang, Y.; Mi, Y. Demulsification of oily wastewater using a nano carbon black modified with polyethyleneimine. Chemosphere 2022, 295, 133857. [Google Scholar] [CrossRef] [PubMed]
- Korde, S.; Tandekar, S.; Jugade, R.M. Novel mesoporous chitosan-zirconia-ferrosoferric oxide as magnetic composite for defluoridation of water. J. Environ. Chem. Eng. 2020, 8, 104360. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, M.; Jiang, H.; Wu, Z.-Y.; Zhou, D.-D.; Li, D.-Q.; Yang, F.-Q. Tyrosinase-mediated dopamine polymerization modified magnetic alginate beads for dual-enzymes encapsulation: Preparation, performance and application. Colloids Surf. B Biointerfaces 2020, 188, 110800. [Google Scholar] [CrossRef]
- Luo, R.; Wang, X.; Deng, J.; Zhang, H.; Maitz, M.F.; Yang, L.; Wang, J.; Huang, N.; Wang, Y. Dopamine-assisted deposition of poly (ethylene imine) for efficient heparinization. Colloids Surf. B Biointerfaces 2016, 144, 90–98. [Google Scholar] [CrossRef]
- Sun, J.; Wang, C.; Wang, Y.; Ji, S.; Liu, W. Immobilization of carbonic anhydrase on polyethylenimine/dopamine codeposited membranes. J. Appl. Polym. Sci. 2019, 136, 47784. [Google Scholar] [CrossRef]
- González, N.P.; Strumia, M.C.; Alvarez Igarzabal, C.I. Macroporous bead modification with polyethylenimines of different molecular weights as polycationic ligands. J. Appl. Polym. Sci. 2010, 116, 2857–2865. [Google Scholar] [CrossRef]
- Wilhelm, M.J.; Gh, M.S.; Wu, T.; Li, Y.; Dai, H.L. Determination of Bacterial Surface Charge Density Via Saturation of Adsorbed Ions. Biophys. J. 2021, 120, 2461–2470. [Google Scholar] [CrossRef]
- Zheng, Y.; Jian, X.; Xing, X.H.; Zhang, C. Highly Efficient Capture of Marine Microbial Strains in Seawater Using Bare Fe3O4 Magnetic Beads. Curr. Microbiol. 2020, 77, 1210–1216. [Google Scholar] [CrossRef]
- Gopal, J.; Abdelhamid, H.N.; Hua, P.Y.; Wu, H.F. Chitosan nanomagnets for effective extraction and sensitive mass spectrometric detection of pathogenic bacterial endotoxin from human urine. J. Mater. Chem. B 2013, 1, 2463–2475. [Google Scholar] [CrossRef]
- He, L.; Yao, L.; Liu, F.; Qin, B.; Song, R.; Huang, W. Magnetic Fe3O4@chitosan nanoparticle: Synthesis, characterization and application as catalyst carrier. J. Nanosci. Nanotechnol. 2010, 10, 6348–6355. [Google Scholar] [CrossRef]
Bacillus subtilis Spores | ||
---|---|---|
Original solution (CFU/100 μL) | 5.46 × 104 | 5.46 × 103 |
After adsorption (CFU/100 μL) | 282 | 34 |
Capture efficiency | 99.49% | 99.32% |
E. coli | Before/RLU | 22 ± 1 | 20 ± 2 | 18 ± 3 |
After/RLU | 998 ± 40 | 1062 ± 51 | 1043 ± 70 | |
Bacillus subtilis | Before/RLU | 19 ± 6 | 14 ± 4 | 26 ± 4 |
After/RLU | 884 ± 11 | 1016 ± 22 | 1002 ± 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Du, B.; Wu, Y.; Liu, Z.; Wang, J.; Xu, J.; Tong, Z.; Mu, X.; Liu, B. Fe3O4@PDA@PEI Core-Shell Microspheres as a Novel Magnetic Sorbent for the Rapid and Broad-Spectrum Separation of Bacteria in Liquid Phase. Materials 2022, 15, 2039. https://doi.org/10.3390/ma15062039
Zhang Y, Du B, Wu Y, Liu Z, Wang J, Xu J, Tong Z, Mu X, Liu B. Fe3O4@PDA@PEI Core-Shell Microspheres as a Novel Magnetic Sorbent for the Rapid and Broad-Spectrum Separation of Bacteria in Liquid Phase. Materials. 2022; 15(6):2039. https://doi.org/10.3390/ma15062039
Chicago/Turabian StyleZhang, Yueqi, Bin Du, Yuting Wu, Zhiwei Liu, Jiang Wang, Jianjie Xu, Zhaoyang Tong, Xihui Mu, and Bing Liu. 2022. "Fe3O4@PDA@PEI Core-Shell Microspheres as a Novel Magnetic Sorbent for the Rapid and Broad-Spectrum Separation of Bacteria in Liquid Phase" Materials 15, no. 6: 2039. https://doi.org/10.3390/ma15062039
APA StyleZhang, Y., Du, B., Wu, Y., Liu, Z., Wang, J., Xu, J., Tong, Z., Mu, X., & Liu, B. (2022). Fe3O4@PDA@PEI Core-Shell Microspheres as a Novel Magnetic Sorbent for the Rapid and Broad-Spectrum Separation of Bacteria in Liquid Phase. Materials, 15(6), 2039. https://doi.org/10.3390/ma15062039