Axial and Shear Buckling Analysis of Multiscale FGM Carbon Nanotube Plates Using the MTSDT Model: A Numerical Approach
Abstract
:1. Introduction
2. Geometrical Configuration and Effective Material Properties
3. Governing Equation
3.1. Displacement Equation
3.2. Strain Displacement Relationship
3.3. Element Description and Shape Function
3.4. Constitutive Relationship
3.5. Buckling Analysis
3.6. Computation of the Critical Buckling Load
- Set a trial vector and ortho-normalize.
- Back substitute
- Multiply or
- Forward substitute
- Form
- Construct so that and , where S is the sign of
- Multiply
- Uniaxial compression: and
- Biaxial compression: and
- SSSS:
- 8.
- CCCC:
- CFCF:
- SSCC:
- SCSC:
4. Numerical Results
4.1. Comparison and Convergence
4.2. Effect of Boundary Conditions on Uniaxial and Biaxial Compression
4.3. Effect of CNT and Volume Fraction Index (n) on the Critical Buckling Load
4.4. Effect of the Side-to-Thickness Ratio (a/h) and Aspect Ratio (b/a) of the Plates
4.5. Critical Buckling Load for Various Types of Plates
4.6. Effect of Biaxial and Shear Loading of the Plate
5. Conclusions
- The critical buckling load parameter was at a maximum under clamped boundary conditions.
- By increasing the volume fraction index (n), the critical buckling is decreased due to less stiffness being obtained at a higher volume fraction index.
- As the weight fraction of CNT increased, the critical buckling load increased because CNT imparted more stiffness to the material.
- The side-to-thickness ratio (a/h) and aspect ratio (b/a) of the plates had a significant impact on the buckling behavior of the plate. Increasing the a/h ratio increased the critical buckling load, and increasing the b/a ratio decreased the critical buckling load.
- Due to the given elastic properties of the Al and Al2O3, the Al/Al2O3 plate yielded the maximum value of the critical buckling load among all plates.
- For the same ratio of in-plane compression in the y- and x-direction, the critical buckling load decreased with increases in in-plane shear loading.
- For all values of in-plane shear loading, the critical buckling load decreased with an increase in the ratio of in-plane compression in the y- and x-direction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
, , and | Young’s modulus, density, and Poisson’s ratio of the metal matrix. |
, , , and | Young’s modulus, diameter, thickness, and length of CNT |
, , and | weight fraction, Poisson’s ratio, and density of CNT. |
Young’s modulus of nanocomposite | |
and | Young’s modulus of final material and Young’s modulus of ceramic fiber |
, and | In-plane and out-of-plane displacement on the midplane. |
and | Rotation of the normal about the midplane on y- and x-axes. |
, , , and | Higher-order terms |
Shape function of the iso-parametric element at the ith node | |
Unknown displacement at the ith node. | |
Cartesian coordinate of the ith node. | |
[K] | Global stiffness matrix. |
Strain–displacement matrix | |
Critical buckling load | |
CNT | Carbon nanotube |
FGM | Functionally graded material |
SWCNT | Single-wall carbon nanotube |
MWCNT | Multi-wall carbon nanotube |
HSDT | Higher-order shear deformation theory |
FEM | Finite element methods |
FSDT | 1st-order shear deformation theory |
TSDT | 3rd-order shear deformation theory |
MTSDT | Modified third-order shear deformation theory |
SSSS | Simply supported condition |
CCCC | Clamped free boundary condition |
CFCF | Clamped-free boundary condition |
SCSC | Simply supported-clamped boundary condition |
SSCC | Simply supported-free boundary condition |
References
- Corr, R.B.; Jennings, A. A simultaneous iteration algorithm for symmetric eigenvalue problems. Int. J. Numer. Methods Eng. 1976, 10, 647–663. [Google Scholar] [CrossRef]
- Abrate, S. Free vibration, buckling, and static deflections of functionally graded plates. Compos. Sci. Technol. 2006, 66, 2383–2394. [Google Scholar] [CrossRef]
- Zenkour, A.M. Generalized shear deformation theory for bending analysis of functionally graded plates. Appl. Math. Model. 2006, 30, 67–84. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.W. Geometrically nonlinear large deformation of CNT-reinforced composite plates with internal column supports. J. Model. Mech. Mater. 2017, 1, 20160154. [Google Scholar] [CrossRef] [Green Version]
- Bodaghi, M.; Saidi, A.R. Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory. Appl. Math. Model. 2010, 34, 3659–3673. [Google Scholar] [CrossRef]
- Thai, H.; Choi, D. An efficient and simple refined theory for buckling analysis of functionally graded plates. Appl. Math. Model. 2012, 36, 1008–1022. [Google Scholar] [CrossRef]
- Ahmed, A. Post Buckling Analysis of Sandwich Beams with Functionally Graded Faces Using a Consistent Higher Order Theory. Int. J. Civ. Struct. Environ. Infrastruct. Eng. Res. Dev. 2014, 4, 59–64. [Google Scholar]
- Gulshan Taj, M.N.A.; Chakrabarti, A.; Sheikh, A.H. Analysis of functionally graded plates using higher order shear deformation theory. Appl. Math. Model. 2013, 37, 8484–8494. [Google Scholar] [CrossRef]
- Talha, M.; Singh, B.N. Static response and free vibration analysis of FGM plates using higher order shear deformation theory. Appl. Math. Model. 2010, 34, 3991–4011. [Google Scholar] [CrossRef]
- Upadhyay, A.K.; Shukla, K.K. Geometrically nonlinear static and dynamic analysis of functionally graded skew plates. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 2252–2279. [Google Scholar] [CrossRef]
- Chakraborty, S.; Dey, T.; Kumar, R. Stability and vibration analysis of CNT-Reinforced functionally graded laminated composite cylindrical shell panels using semi-analytical approach. Compos. Part B Eng. 2019, 168, 1–14. [Google Scholar] [CrossRef]
- Mishra, B.B.; Kumar, A.; Zaburko, J.; Sadowska-Buraczewska, B.; Barnat-Hunek, D. Dynamic Response of Angle Ply Laminates with Uncertainties Using MARS, ANN-PSO, GPR and ANFIS. Materials 2021, 14, 395. [Google Scholar] [CrossRef]
- Chaubey, A.; Kumar, A.; Grzegorczyk-Franczak, M.; Szafraniec, M. Temperature and moisture effect on laminated rhombic hyperbolic paraboloid. Bud. I Archit. 2019, 18, 023–040. [Google Scholar] [CrossRef]
- Kiani, Y. Buckling of FG-CNT-reinforced composite plates subjected to parabolic loading. Acta Mech. 2017, 228, 1303–1319. [Google Scholar] [CrossRef]
- Feldman, E.; Aboudi, J. Buckling analysis of functionally graded plates subjected to uniaxial loading. Compos. Struct. 1997, 38, 29–36. [Google Scholar]
- Zghal, S.; Frikha, A.; Dammak, F. Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels. Compos. Part B Eng. 2018, 150, 165–183. [Google Scholar] [CrossRef]
- Ramu, I.; Mohanty, S.C. Buckling Analysis of Rectangular Functionally Graded Material Plates under Uniaxial and Biaxial Compression Load. Procedia Eng. 2014, 86, 748–757. [Google Scholar] [CrossRef] [Green Version]
- Arani, A.G.; Maghamikia, S.; Mohammadimehr, M.; Arefmanesh, A. Buckling analysis of laminated composite rectangular plates reinforced by SWCNTs using analytical and finite element methods. J. Mech. Sci. Technol. 2011, 25, 809–820. [Google Scholar] [CrossRef]
- Yaghoobi, H.; Yaghoobi, P. Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: An analytical approach Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary. Meccanica 2013, 48, 2019–2035. [Google Scholar] [CrossRef]
- Hanifehlou, S.; Mohammadimehr, M. Buckling analysis of sandwich beam reinforced by GPLs using various shear deformation theories. Comput. Concr. 2020, 25, 427–432. [Google Scholar] [CrossRef]
- Lei, Z.X.; Zhang, L.W.; Liew, K.M. Buckling analysis of CNT reinforced functionally graded laminated composite plates. Compos. Struct. 2016, 152, 62–73. [Google Scholar] [CrossRef]
- Wang, J.F.; Cao, S.H.; Zhang, W. A Solids Thermal vibration and buckling analysis of functionally graded carbon nanotube reinforced composite quadrilateral plate. Eur. J. Mech. A Solids 2021, 85, 104105. [Google Scholar] [CrossRef]
- Mozafari, H.; Ayob, A. Effect of Thickness Variation on the Mechanical Buckling Load in Plates Made of Functionally Graded Materials. Procedia Technol. 2012, 1, 496–504. [Google Scholar] [CrossRef] [Green Version]
- Aragh, B.S.; Barati, A.H.N.; Hedayati, H. Eshelby-Mori-Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels. Compos. Part B Eng. 2012, 43, 1943–1954. [Google Scholar] [CrossRef]
- Bouguenina, O.; Khalil, B.; Tounsi, A. Numerical analysis of FGM plates with variable thickness subjected to thermal buckling. Steel Compos. Struct. 2015, 19, 679–695. [Google Scholar] [CrossRef]
- Mirzaei, M.; Kiani, Y. Snap-through phenomenon in a thermally postbuckled temperature dependent sandwich beam with FG-CNTRC face sheets. Compos. Struct. 2015, 134, 1004–1013. [Google Scholar] [CrossRef]
- Singh, S.J.; Harsha, S.P. Exact Solution for Free Vibration and Buckling of Sandwich S-FGM Plates on Pasternak Elastic Foundation with Various Boundary Conditions. Int. J. Struct. Stab. Dyn. 2018, 19, 1950028. [Google Scholar] [CrossRef]
- Zeverdejani, M.K.; Beni, Y.T.; Kiani, Y. Multi-scale Buckling and Post-buckling analysis of functionally graded Laminated Composite Plates Reinforced by Defective Graphene Sheets. Int. J. Struct. Stab. Dyn. 2020, 20, 2050001. [Google Scholar] [CrossRef]
- Fekrar, A.; El Meiche, N.; Bessaim, A.; Tounsi, A.; Adda Bedia, E.A. Buckling analysis of functionally graded hybrid composite plates using a new four variable refined plate theory. Steel Compos. Struct. 2012, 13, 91–107. [Google Scholar] [CrossRef]
- Abdulrazzaq, M.A.; Fenjan, R.M.; Ahmed, R.A.; Faleh, N.M. Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory. Steel Compos. Struct. 2020, 35, 147–157. [Google Scholar] [CrossRef]
- Shahraki, H.; Tajmir Riahi, H.; Izadinia, M.; Talaeitaba, S.B. Buckling and vibration analysis of FG-CNT-reinforced composite rectangular thick nanoplates resting on Kerr foundation based on nonlocal strain gradient theory. JVC/J. Vib. Control 2020, 26, 277–305. [Google Scholar] [CrossRef]
- Costa, D.M.S.; Loja, M.A.R. Assessing the static behavior of hybrid CNT-metal-ceramic composite plates. AIMS Mater. Sci. 2016, 3, 808–831. [Google Scholar] [CrossRef]
- Halpin Affdl, J.C.; Kardos, J.L. The Halipin-Tsai Equsations: A Review. Polym. Eng. Sci. 1976, 16, 344–352. [Google Scholar]
- Kiani, Y. Shear buckling of FG-CNT reinforced composite plates using Chebyshev-Ritz method. Compos. Part B Eng. 2016, 105, 176–187. [Google Scholar] [CrossRef]
- Reddy, J.N. Mechanics of Laminated Composite Plates and Shells; CRC Press: Boca Raton, FL, USA, 2003; ISBN 9780849315923. [Google Scholar]
- Cook, R.D.; Malkus, D.S.; Plesha, M.E.; Witt, R.J.W. Concept and Applications of Finite Element Analysis. Master’s Thesis, Universidade Federal de Santa CatarinaCentro Tecnológico, Programa de Pós-Graduação em Engenharia Civil, Florianópolis, Santa Catarina, Brazil, 2002; p. 733. [Google Scholar]
- Reddy, B.S.; Kumar, J.S.; Reddy, C.E.; Reddy, K.V.K. Buckling Analysis of Functionally Graded Material Plates Using Higher Order Shear Deformation Theory. J. Compos. 2013, 2013, 12. [Google Scholar]
Constituents’ Material | Material Properties | |
---|---|---|
Matrix [9] | Aluminum (Al) | Em = 70 GPa, νm = 0.3, ρm = 2707 |
Stainless steel (SUS304) | Em = 207.78 GPa, νm = 0.3177, ρm = 8166 | |
Ti-6Al-4V | Em = 105.7 GPa, νm = 0.298, ρm = 4429 | |
Fibre [9] | Zirconia (ZrO2) | Ec = 151 GPa, νc = 0.3, ρc = 3000 |
Alumina (Al2O3) | Ec = 380 GPa, νc = 0.3, ρc = 3800 | |
Silicon nitride (Si3N4) | Ec = 322.27 GPa, νc = 0.24, ρc = 2370 | |
CNT [32] | MWCNT | ECNT = 400 GPa, lCNT = 50 μm, dCNT = 20 nm, tCNT = 0.34 nm, ρCNT = 1350 kg/m3 |
SWCNT | ECNT = 640 GPa, lCNT = 25 μm, dCNT = 1.4 nm, tCNT = 0.34 nm, ρCNT = 1350 kg/m3 |
Mesh Size | Volume Fraction Index (n) | ||||||
---|---|---|---|---|---|---|---|
0 | 0.5 | 1 | 2 | 5 | 10 | ||
a/h = 10 | 2 × 2 | 19.192 | 13.276 | 11.016 | 9.161 | 7.191 | 6.017 |
3 × 3 | 18.594 | 9.698 | 10.410 | 8.566 | 6.676 | 5.701 | |
4 × 4 | 18.354 | 8.131 | 10.519 | 8.397 | 1.917 | 5.514 | |
5 × 5 | 17.516 | 12.498 | 9.268 | 7.671 | 6.562 | 5.607 | |
6 × 6 | 17.811 | 12.487 | 9.888 | 7.650 | 6.022 | 5.022 | |
[37] | 18.570 | 12.120 | 9.330 | 7.260 | 6.030 | 5.450 |
a/h | Volume Fraction (n) | |||||||
---|---|---|---|---|---|---|---|---|
0 | 0.5 | 1 | 2 | 5 | 10 | |||
Uniaxial | 5 | Present Study | 16.221 | 10.897 | 8.322 | 5.846 | 5.320 | 4.329 |
Data in [37] | 16.000 | 10.570 | 8.146 | 6.230 | 4.970 | 4.440 | ||
% error | 1.362 | 3.001 | 2.115 | 6.569 | 6.579 | 2.564 | ||
Data in [6] | 16.021 | 10.625 | 8.225 | 6.343 | 5.053 | 4.481 | ||
% error | 1.232 | 2.492 | 1.172 | 8.505 | 5.017 | 3.504 | ||
10 | Present Study | 17.516 | 12.498 | 9.268 | 6.671 | 6.562 | 5.607 | |
Data in [37] | 18.540 | 12.080 | 9.299 | 7.210 | 5.990 | 5.420 | ||
% error | 5.846 | 3.345 | 0.334 | 8.080 | 8.717 | 3.335 | ||
Data in [6] | 18.579 | 12.123 | 9.339 | 7.263 | 6.035 | 5.453 | ||
% error | 6.066 | 3.001 | 0.767 | 8.876 | 8.027 | 2.750 | ||
20 | Present Study | 19.606 | 12.785 | 9.960 | 8.371 | 7.084 | 5.838 | |
Data in [37] | 19.310 | 12.530 | 9.649 | 7.510 | 6.320 | 5.750 | ||
% error | 1.510 | 1.995 | 3.122 | 10.286 | 10.785 | 1.507 | ||
Data in [6] | 19.353 | 12.567 | 9.668 | 7.537 | 6.345 | 5.767 | ||
% error | 1.291 | 1.707 | 2.937 | 9.962 | 10.435 | 1.220 | ||
5 | Present Study | 8.074 | 5.323 | 4.095 | 3.147 | 2.505 | 2.242 | |
Data in [37] | 8.001 | 5.288 | 4.073 | 3.120 | 2.487 | 2.221 | ||
% error | 0.904 | 0.658 | 0.537 | 0.858 | 0.719 | 0.937 | ||
Data in [6] | 8.011 | 5.313 | 4.112 | 3.172 | 2.527 | 2.240 | ||
% error | 0.786 | 0.193 | 0.420 | 0.782 | 0.858 | 0.076 | ||
Biaxial | 10 | Present Study | 9.074 | 6.183 | 4.488 | 3.522 | 3.056 | 2.818 |
Data in [37] | 9.273 | 6.045 | 4.650 | 3.608 | 2.998 | 2.715 | ||
% error | 2.193 | 2.232 | 3.610 | 2.442 | 1.898 | 3.655 | ||
Data in [6] | 9.289 | 6.062 | 4.670 | 3.632 | 3.018 | 2.726 | ||
% error | 2.373 | 1.965 | 4.046 | 3.109 | 1.253 | 3.251 | ||
20 | Present Study | 9.826 | 6.349 | 5.020 | 4.064 | 3.327 | 3.062 | |
Data in [37] | 9.658 | 6.270 | 4.821 | 3.757 | 3.162 | 2.876 | ||
% error | 1.710 | 1.244 | 3.964 | 7.554 | 4.959 | 6.074 | ||
Data in [6] | 9.676 | 6.283 | 4.834 | 3.769 | 3.172 | 2.883 | ||
% error | 1.522 | 1.033 | 3.711 | 7.269 | 4.647 | 5.833 |
W_cnt | Boundary Conditions | Volume Fraction Index (n) | ||||||
---|---|---|---|---|---|---|---|---|
0 | 0.5 | 1 | 2 | 5 | 10 | |||
Uniaxial | 0% | SSSS | 7.389 | 5.886 | 5.328 | 4.891 | 4.449 | 4.125 |
CCCC | 19.367 | 15.948 | 14.141 | 12.158 | 10.263 | 9.718 | ||
CFCF | 4.415 | 3.159 | 2.495 | 1.881 | 1.807 | 1.466 | ||
SSCC | 10.267 | 6.862 | 6.134 | 5.557 | 4.718 | 4.505 | ||
SCSC | 11.242 | 7.326 | 6.149 | 5.257 | 4.985 | 4.616 | ||
2.5% | SSSS | 7.389 | 6.626 | 6.349 | 5.892 | 5.723 | 5.708 | |
CCCC | 19.367 | 17.611 | 16.680 | 15.667 | 14.710 | 14.427 | ||
CFCF | 4.415 | 3.277 | 2.615 | 2.457 | 2.281 | 2.061 | ||
SSCC | 10.267 | 7.725 | 7.284 | 6.778 | 6.662 | 6.427 | ||
SCSC | 11.242 | 8.326 | 7.518 | 7.322 | 7.149 | 6.783 | ||
5% | SSSS | 7.389 | 7.358 | 7.358 | 7.339 | 7.328 | 7.322 | |
CCCC | 19.367 | 19.297 | 19.259 | 19.219 | 19.181 | 19.169 | ||
CFCF | 4.415 | 4.248 | 4.066 | 4.065 | 4.025 | 4.009 | ||
SSCC | 10.267 | 10.037 | 9.882 | 9.767 | 9.682 | 9.623 | ||
SCSC | 11.242 | 11.126 | 10.950 | 10.730 | 10.551 | 10.496 | ||
Biaxial | 0% | SSSS | 3.697 | 2.945 | 2.665 | 2.447 | 2.226 | 2.068 |
CCCC | 16.520 | 13.602 | 12.062 | 10.370 | 8.758 | 8.298 | ||
CFCF | 2.010 | 1.083 | 1.066 | 1.043 | 0.662 | 0.559 | ||
SSCC | 4.726 | 4.226 | 3.855 | 3.475 | 2.495 | 2.103 | ||
SCSC | 5.674 | 4.936 | 3.952 | 3.308 | 2.418 | 2.218 | ||
2.5% | SSSS | 3.697 | 3.315 | 3.176 | 3.066 | 2.948 | 2.861 | |
CCCC | 16.520 | 15.021 | 14.228 | 13.364 | 12.550 | 12.311 | ||
CFCF | 2.010 | 1.795 | 1.412 | 1.291 | 1.127 | 1.087 | ||
SSCC | 4.726 | 4.495 | 4.158 | 3.619 | 3.219 | 3.019 | ||
SCSC | 5.674 | 5.174 | 4.512 | 3.853 | 3.453 | 3.223 | ||
5% | SSSS | 3.697 | 3.682 | 3.676 | 3.672 | 3.667 | 3.663 | |
CCCC | 16.520 | 16.460 | 16.428 | 16.393 | 16.361 | 16.351 | ||
CFCF | 2.010 | 1.951 | 1.831 | 1.811 | 1.760 | 1.760 | ||
SSCC | 4.726 | 4.636 | 4.596 | 4.556 | 4.456 | 4.404 | ||
SCSC | 5.674 | 5.574 | 5.494 | 5.395 | 5.360 | 5.355 |
W_cnt | Mode | Volume Fraction Index (n) | ||||||
---|---|---|---|---|---|---|---|---|
0 | 0.5 | 1 | 2 | 5 | 10 | |||
SWCNT | 0% | 1 | 7.816 | 6.218 | 5.633 | 5.186 | 4.439 | 4.395 |
2 | 12.650 | 9.979 | 8.929 | 8.135 | 4.733 | 6.986 | ||
3 | 17.908 | 14.536 | 12.994 | 11.378 | 7.446 | 9.308 | ||
4 | 17.927 | 14.596 | 13.002 | 11.468 | 9.856 | 9.426 | ||
5 | 20.211 | 16.358 | 14.638 | 12.980 | 10.005 | 10.675 | ||
6 | 20.687 | 16.405 | 14.682 | 13.301 | 11.345 | 11.367 | ||
2.5% | 1 | 7.816 | 7.005 | 6.716 | 6.490 | 6.246 | 6.061 | |
2 | 12.650 | 11.324 | 10.826 | 10.435 | 10.042 | 9.765 | ||
3 | 17.908 | 16.186 | 15.406 | 14.599 | 13.814 | 13.518 | ||
4 | 17.927 | 16.228 | 15.420 | 14.634 | 13.883 | 13.570 | ||
5 | 20.211 | 18.264 | 17.390 | 16.530 | 15.689 | 15.330 | ||
6 | 20.687 | 18.534 | 17.712 | 17.052 | 16.387 | 15.938 | ||
5% | 1 | 7.816 | 7.784 | 7.773 | 7.764 | 7.756 | 7.747 | |
2 | 12.650 | 12.599 | 12.580 | 12.564 | 12.543 | 12.534 | ||
3 | 17.908 | 17.840 | 17.809 | 17.778 | 17.735 | 17.741 | ||
4 | 17.927 | 17.860 | 17.828 | 17.795 | 17.769 | 17.753 | ||
5 | 20.211 | 20.133 | 20.098 | 20.064 | 20.018 | 20.017 | ||
6 | 20.687 | 20.603 | 20.572 | 20.545 | 20.522 | 20.499 | ||
MWCNT | 2.5% | 1 | 7.816 | 6.322 | 5.777 | 5.360 | 4.933 | 4.612 |
2 | 12.650 | 10.160 | 9.189 | 8.451 | 7.796 | 7.353 | ||
3 | 17.908 | 14.752 | 13.312 | 11.804 | 10.378 | 9.861 | ||
4 | 17.927 | 14.810 | 13.320 | 11.886 | 10.517 | 9.970 | ||
5 | 20.211 | 16.648 | 15.038 | 13.448 | 11.917 | 11.285 | ||
6 | 20.687 | 16.650 | 15.057 | 13.815 | 12.695 | 11.971 | ||
5% | 1 | 7.816 | 6.424 | 5.918 | 5.530 | 5.129 | 4.827 | |
2 | 12.650 | 10.336 | 9.441 | 8.757 | 8.137 | 7.713 | ||
3 | 17.908 | 14.965 | 13.624 | 12.222 | 10.890 | 10.403 | ||
4 | 17.927 | 15.020 | 13.632 | 12.296 | 11.019 | 10.504 | ||
5 | 20.211 | 16.888 | 15.387 | 13.908 | 12.479 | 11.885 | ||
6 | 20.687 | 16.936 | 15.464 | 14.312 | 13.254 | 12.563 |
W_cnt | Mode | Volume Fraction Index (n) | ||||||
---|---|---|---|---|---|---|---|---|
0 | 0.5 | 2 | 1 | 5 | 10 | |||
SWCNT | 0% | 1 | 3.909 | 3.109 | 2.817 | 2.593 | 2.367 | 2.197 |
2 | 10.252 | 8.082 | 7.230 | 6.588 | 6.037 | 5.664 | ||
3 | 10.287 | 8.111 | 7.258 | 6.613 | 6.057 | 5.682 | ||
4 | 12.900 | 10.355 | 9.286 | 8.327 | 7.396 | 6.945 | ||
5 | 13.570 | 10.994 | 9.846 | 8.731 | 7.656 | 7.199 | ||
6 | 13.624 | 11.038 | 9.885 | 8.765 | 7.685 | 7.226 | ||
2.5% | 1 | 3.909 | 3.503 | 3.358 | 3.245 | 3.123 | 3.031 | |
2 | 10.252 | 9.176 | 8.773 | 8.457 | 8.141 | 7.915 | ||
3 | 10.287 | 9.208 | 8.803 | 8.486 | 8.168 | 7.941 | ||
4 | 12.900 | 11.613 | 11.081 | 10.598 | 10.113 | 9.860 | ||
5 | 13.570 | 12.254 | 11.674 | 11.110 | 10.557 | 10.310 | ||
6 | 13.624 | 12.303 | 11.720 | 11.154 | 10.598 | 10.350 | ||
5% | 1 | 3.909 | 3.892 | 3.887 | 3.882 | 3.877 | 3.873 | |
2 | 10.252 | 10.211 | 10.195 | 10.183 | 10.169 | 10.159 | ||
3 | 10.287 | 10.245 | 10.230 | 10.217 | 10.203 | 10.193 | ||
4 | 12.900 | 12.849 | 12.828 | 12.809 | 12.789 | 12.779 | ||
5 | 13.570 | 13.518 | 13.494 | 13.472 | 13.450 | 13.440 | ||
6 | 13.624 | 13.571 | 13.548 | 13.525 | 13.503 | 13.493 | ||
MWCNT | 2.5% | 1 | 3.909 | 3.161 | 2.889 | 2.680 | 2.467 | 2.306 |
2 | 10.252 | 8.229 | 7.441 | 6.846 | 6.321 | 5.961 | ||
3 | 10.287 | 8.259 | 7.469 | 6.871 | 6.342 | 5.981 | ||
4 | 12.900 | 10.522 | 9.525 | 8.631 | 7.757 | 7.329 | ||
5 | 13.570 | 11.159 | 10.087 | 9.045 | 8.039 | 7.607 | ||
6 | 13.624 | 11.203 | 10.127 | 9.081 | 8.070 | 7.636 | ||
5% | 1 | 3.909 | 3.212 | 2.959 | 2.765 | 2.565 | 2.414 | |
2 | 10.252 | 8.373 | 7.646 | 7.095 | 6.597 | 6.253 | ||
3 | 10.287 | 8.403 | 7.674 | 7.120 | 6.619 | 6.273 | ||
4 | 12.900 | 10.685 | 9.760 | 8.927 | 8.111 | 7.705 | ||
5 | 13.570 | 11.321 | 10.323 | 9.354 | 8.414 | 8.008 | ||
6 | 13.624 | 11.366 | 10.364 | 9.391 | 8.447 | 8.039 |
Mode | Volume Fraction Index (n) | ||||||
---|---|---|---|---|---|---|---|
0 | 0.5 | 1 | 2 | 5 | 10 | ||
Al/Al2O3 | 1 | 13.278 | 12.804 | 10.410 | 8.566 | 6.676 | 5.701 |
2 | 18.593 | 15.237 | 12.280 | 9.373 | 6.918 | 5.889 | |
3 | 21.668 | 16.931 | 13.787 | 10.492 | 7.404 | 6.294 | |
4 | 23.838 | 19.236 | 15.538 | 11.890 | 8.563 | 7.254 | |
5 | 27.250 | 19.923 | 15.771 | 12.083 | 9.336 | 8.262 | |
6 | 29.562 | 28.436 | 22.198 | 17.197 | 11.512 | 9.704 | |
Al/ZrO2 | 1 | 7.816 | 6.218 | 5.633 | 5.186 | 4.439 | 4.395 |
2 | 12.650 | 9.979 | 8.929 | 8.135 | 4.733 | 6.986 | |
3 | 17.908 | 14.536 | 12.994 | 11.378 | 7.446 | 9.308 | |
4 | 17.927 | 14.596 | 13.002 | 11.468 | 9.856 | 9.426 | |
5 | 20.211 | 16.358 | 14.638 | 12.980 | 10.005 | 10.675 | |
6 | 20.687 | 16.405 | 14.682 | 13.301 | 11.345 | 11.367 | |
Ti-6Al-4V/ZrO2 | 1 | 4.865 | 4.360 | 4.139 | 3.981 | 3.812 | 3.688 |
2 | 5.739 | 5.097 | 4.833 | 4.573 | 4.317 | 4.207 | |
3 | 6.427 | 5.606 | 5.335 | 5.041 | 4.755 | 4.634 | |
4 | 6.946 | 6.540 | 6.080 | 5.750 | 5.426 | 5.286 | |
5 | 7.729 | 6.877 | 6.553 | 6.260 | 5.974 | 5.801 | |
6 | 10.933 | 9.715 | 9.184 | 8.597 | 8.040 | 7.862 | |
SUS304/Si3N4 | 1 | 4.671 | 4.409 | 4.202 | 3.982 | 3.822 | 3.021 |
2 | 5.413 | 5.068 | 4.731 | 4.403 | 4.263 | 5.405 | |
3 | 5.990 | 5.608 | 5.228 | 4.858 | 4.704 | 6.184 | |
4 | 6.840 | 6.406 | 5.978 | 5.559 | 5.379 | 6.853 | |
5 | 7.433 | 6.971 | 6.586 | 6.219 | 5.998 | 7.782 | |
6 | 10.267 | 9.565 | 8.815 | 8.102 | 7.875 | 8.571 |
Mode | Volume Fraction Index (n) | ||||||
---|---|---|---|---|---|---|---|
0 | 0.5 | 1 | 2 | 5 | 10 | ||
Al/Al2O3 | 1 | 9.303 | 6.359 | 5.206 | 4.285 | 3.463 | 2.949 |
2 | 18.476 | 13.130 | 10.677 | 8.189 | 5.842 | 4.949 | |
3 | 18.576 | 13.168 | 10.691 | 8.202 | 5.843 | 4.960 | |
4 | 18.639 | 13.251 | 10.778 | 8.263 | 5.885 | 4.983 | |
5 | 19.858 | 13.707 | 10.884 | 8.418 | 6.244 | 5.354 | |
6 | 20.029 | 13.826 | 10.982 | 8.500 | 6.301 | 5.399 | |
Al/ZrO2 | 1 | 3.909 | 3.109 | 2.817 | 2.593 | 2.367 | 2.197 |
2 | 10.252 | 8.082 | 7.230 | 6.588 | 6.037 | 5.664 | |
3 | 10.287 | 8.111 | 7.258 | 6.613 | 6.057 | 5.682 | |
4 | 12.900 | 10.355 | 9.286 | 8.327 | 7.396 | 6.945 | |
5 | 13.570 | 10.994 | 9.846 | 8.731 | 7.656 | 7.199 | |
6 | 13.624 | 11.038 | 9.885 | 8.765 | 7.685 | 7.226 | |
Ti-6Al-4V/ZrO2 | 1 | 2.445 | 2.170 | 2.071 | 1.992 | 1.907 | 1.845 |
2 | 4.861 | 4.352 | 4.126 | 3.904 | 3.686 | 3.590 | |
3 | 4.889 | 4.376 | 4.149 | 3.926 | 3.708 | 3.612 | |
4 | 4.904 | 4.391 | 4.163 | 3.938 | 3.718 | 3.621 | |
5 | 5.226 | 4.663 | 4.425 | 4.205 | 3.986 | 3.878 | |
6 | 5.271 | 4.703 | 4.463 | 4.241 | 4.020 | 3.912 | |
SUS304/Si3N4 | 1 | 2.696 | 2.337 | 2.206 | 2.103 | 1.993 | 1.913 |
2 | 5.294 | 4.637 | 4.344 | 4.057 | 3.775 | 3.652 | |
3 | 5.308 | 4.648 | 4.354 | 4.067 | 3.786 | 3.663 | |
4 | 5.339 | 4.678 | 4.382 | 4.091 | 3.806 | 3.682 | |
5 | 5.677 | 4.952 | 4.642 | 4.356 | 4.072 | 3.937 | |
6 | 5.725 | 4.994 | 4.682 | 4.393 | 4.107 | 3.970 |
W_cnt | Nxy/Nx | Volume Fraction Index (n) | |||||
---|---|---|---|---|---|---|---|
0 | 0.5 | 1 | 2 | 5 | 10 | ||
0% | 0 | 3.697 | 2.945 | 2.665 | 2.447 | 2.226 | 2.068 |
0.25 | 3.678 | 2.930 | 2.651 | 2.434 | 2.214 | 2.057 | |
0.5 | 3.629 | 2.891 | 2.615 | 2.400 | 2.183 | 2.028 | |
1 | 3.462 | 2.758 | 2.493 | 2.285 | 2.077 | 1.931 | |
2 | 3.026 | 2.410 | 2.035 | 1.989 | 1.805 | 1.681 | |
2.5% | 0 | 3.697 | 3.315 | 3.176 | 3.066 | 2.948 | 2.861 |
0.25 | 3.678 | 3.298 | 3.160 | 3.051 | 2.933 | 2.847 | |
0.5 | 3.629 | 3.255 | 3.118 | 3.010 | 2.893 | 2.808 | |
1 | 3.462 | 3.105 | 3.105 | 2.870 | 2.758 | 2.678 | |
2 | 3.026 | 2.714 | 2.598 | 2.505 | 2.406 | 2.337 | |
5% | 0 | 3.697 | 3.682 | 3.676 | 3.672 | 3.667 | 3.663 |
0.25 | 3.678 | 3.663 | 3.658 | 3.658 | 3.649 | 3.645 | |
0.5 | 3.629 | 3.614 | 3.609 | 3.605 | 3.600 | 3.596 | |
1 | 3.462 | 3.448 | 3.443 | 3.439 | 3.434 | 3.431 | |
2 | 3.026 | 3.013 | 3.009 | 3.005 | 3.001 | 2.998 |
W_cnt | n | Ny/Nx | Nxy/Nx | ||||
---|---|---|---|---|---|---|---|
0 | 0.25 | 0.5 | 1 | 2 | |||
0% | 1 | 0 | 6.037 | 5.328 | 5.235 | 5.020 | 4.542 |
0.25 | 4.264 | 4.210 | 4.073 | 3.679 | 2.916 | ||
0.5 | 3.554 | 3.522 | 3.441 | 3.186 | 2.627 | ||
1 | 2.665 | 2.651 | 2.615 | 2.493 | 2.035 | ||
2 | 1.776 | 1.772 | 1.761 | 1.720 | 1.593 | ||
2 | 0 | 4.891 | 3.245 | 4.446 | 4.101 | 2.981 | |
0.25 | 3.914 | 3.863 | 3.733 | 3.366 | 2.916 | ||
0.5 | 3.262 | 3.233 | 3.156 | 2.918 | 2.400 | ||
1 | 2.447 | 2.434 | 2.400 | 2.285 | 1.989 | ||
2 | 1.631 | 1.627 | 1.616 | 1.577 | 1.458 | ||
5 | 0 | 4.449 | 1.704 | 4.224 | 3.584 | 2.981 | |
0.25 | 3.561 | 3.514 | 3.393 | 3.054 | 2.413 | ||
0.5 | 2.968 | 2.941 | 2.869 | 2.650 | 2.177 | ||
1 | 2.226 | 2.214 | 2.183 | 2.077 | 1.805 | ||
2 | 1.484 | 1.480 | 1.470 | 1.434 | 1.325 | ||
2.5% | 1 | 0 | 6.349 | 6.440 | 5.769 | 5.215 | 2.211 |
0.25 | 5.081 | 5.018 | 4.856 | 4.392 | 3.488 | ||
0.5 | 4.235 | 4.198 | 4.102 | 3.803 | 3.141 | ||
1 | 3.176 | 3.160 | 3.118 | 3.105 | 2.598 | ||
2 | 2.117 | 2.112 | 2.099 | 1.726 | 1.901 | ||
2 | 0 | 5.708 | 6.440 | 5.724 | 2.475 | 1.032 | |
0.25 | 4.905 | 4.844 | 4.686 | 4.235 | 3.360 | ||
0.5 | 4.088 | 4.053 | 3.959 | 3.668 | 3.027 | ||
1 | 3.066 | 3.051 | 3.010 | 2.870 | 2.505 | ||
2 | 2.044 | 2.039 | 2.026 | 1.979 | 1.833 | ||
5 | 0 | 5.892 | 6.556 | 5.725 | 4.733 | 3.742 | |
0.25 | 4.716 | 4.656 | 4.503 | 4.068 | 3.226 | ||
0.5 | 3.931 | 3.896 | 3.805 | 3.524 | 2.907 | ||
1 | 2.948 | 2.933 | 2.893 | 2.758 | 2.406 | ||
2 | 2.044 | 1.960 | 1.351 | 1.902 | 1.762 | ||
5% | 1 | 0 | 7.358 | 7.244 | 6.897 | 6.068 | 4.521 |
0.25 | 5.881 | 5.808 | 5.621 | 5.085 | 4.040 | ||
0.5 | 4.902 | 4.859 | 4.748 | 4.402 | 3.638 | ||
1 | 3.676 | 3.658 | 3.609 | 3.443 | 3.009 | ||
2 | 2.450 | 2.445 | 2.429 | 2.373 | 2.201 | ||
2 | 0 | 7.339 | 5.198 | 6.917 | 5.971 | 4.508 | |
0.25 | 5.874 | 5.801 | 5.614 | 5.079 | 4.035 | ||
0.5 | 4.896 | 4.853 | 4.743 | 4.397 | 3.633 | ||
1 | 3.672 | 3.658 | 3.605 | 3.439 | 3.005 | ||
2 | 2.448 | 2.442 | 2.426 | 2.371 | 2.198 | ||
5 | 0 | 7.328 | 4.049 | 6.917 | 1.713 | 4.504 | |
0.25 | 5.866 | 5.793 | 5.607 | 5.072 | 4.029 | ||
0.5 | 4.889 | 4.847 | 4.736 | 4.391 | 3.628 | ||
1 | 3.667 | 3.649 | 3.600 | 3.434 | 3.001 | ||
2 | 2.444 | 2.438 | 2.423 | 2.367 | 2.195 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.; Kumar, A.; Szafraniec, M.; Barnat-Hunek, D.; Styczeń, J. Axial and Shear Buckling Analysis of Multiscale FGM Carbon Nanotube Plates Using the MTSDT Model: A Numerical Approach. Materials 2022, 15, 2401. https://doi.org/10.3390/ma15072401
Kumar R, Kumar A, Szafraniec M, Barnat-Hunek D, Styczeń J. Axial and Shear Buckling Analysis of Multiscale FGM Carbon Nanotube Plates Using the MTSDT Model: A Numerical Approach. Materials. 2022; 15(7):2401. https://doi.org/10.3390/ma15072401
Chicago/Turabian StyleKumar, Ravi, Ajay Kumar, Małgorzata Szafraniec, Danuta Barnat-Hunek, and Joanna Styczeń. 2022. "Axial and Shear Buckling Analysis of Multiscale FGM Carbon Nanotube Plates Using the MTSDT Model: A Numerical Approach" Materials 15, no. 7: 2401. https://doi.org/10.3390/ma15072401
APA StyleKumar, R., Kumar, A., Szafraniec, M., Barnat-Hunek, D., & Styczeń, J. (2022). Axial and Shear Buckling Analysis of Multiscale FGM Carbon Nanotube Plates Using the MTSDT Model: A Numerical Approach. Materials, 15(7), 2401. https://doi.org/10.3390/ma15072401