Validation of Nonlinear Dependence of Rolling Friction Moment on the Normal Force for Elastic Materials
Abstract
:1. Introduction
1.1. General Context and Purpose of the Work
1.2. The Friction Torsor
- the sliding friction force T of the opposite direction of sliding velocity ;
- the spinning friction torque , parallel and of the opposite direction of the spinning angular velocity ;
- the rolling friction torque, , parallel and of the opposite direction of the rolling angular velocity .
1.3. Models of Rolling Friction Torque
2. Materials and Methods
2.1. Proposed Methodology and Theoretical Background
- normal reactions:
- tangential reactions, placed in the plane. The components on are:
- the rolling torques and occurring in the contact points, oppose to the rotation ω of the rotor about the axis :
- the kinematics parameters ε and ;
- the magnitudes of the reactions from the two points of contact .
2.2. Design Principles of the Test Rig
2.2.1. Obtaining the Law of Motion
2.2.2. The Rolling Assembly
3. Experimental Tests
3.1. Methodology
3.2. Experimental Results
3.2.1. Surface Quality
3.2.2. The Law of Motion
- The eccentric position of the center of mass of the rotor, due to materials inhomogeneities, shape errors, and relative position errors;
- The identification of the moment corresponding to a specified rotation of the rotor;
- The identification of the initial moment of motion;
- Possible errors of planarity of the aluminum plate.
3.3. Discussion
4. Conclusions
- The paper highlights experimentally the nonlinear dependency between the rolling friction torque and the normal reaction from a Hertzian point contact.
- The rolling friction torque occurring between elastic materials has very small values and requires specific devices for experimental analysis.
- The theoretical contribution of the paper consists in finding the angular acceleration for a special rotor in pure rolling on an inclined of small angle, necessary to make observable the effect of rolling friction.
- The centric and eccentric case for the special rotor is considered and the optimum eccentric position is established. The equation of motion of the rotor is deduced under the hypothesis that the rolling friction moment is proportional to the normal reaction raised at a power λ. The equation of motion specifies that for linear dependency (λ = 1), the value of the angular acceleration does not depend on eccentricity. For , for different eccentricities, the acceleration varies.
- The special rotor was designed and constructed and the experimental law of motion was obtained from the analysis of the frames of recorded motion.
- In order to obtain better experimental results, the errors must be diminished. The radial eccentricity can be reduced by using two rotors more precisely machined—a symmetrical one and an asymmetrical one—but with the same inertial characteristics and after performing a balancing process. The measurement of the errors of planarity of the plate and a theoretical study concerning the manner these errors influence the law of motion, assumed parabolical, are also considered necessary.
- The use of software for image analysis can offer a more precise identification of the moments corresponding to a stipulated rotation.
- The use of an oscilloscope can establish more accurately the initial moment of the motion.
Author Contributions
Funding
Conflicts of Interest
References
- Johnson, K.L.; Kendall, K.; Roberts, A.D. Surface energy and the contact of elastic solids. Proc. Roy. Soc. Lond. 1971, 324, 301–313. [Google Scholar]
- O’Reilly, O.M. The dynamics of rolling disks and sliding disks. Nonlinear Dyn. 1996, 10, 287–305. [Google Scholar] [CrossRef]
- Halme, J.; Andersson, P. Rolling contact fatigue and wear fundamentals for rolling bearing diagnostics—State of the art. Proc. Inst. Mech. Eng. Part J J. Eng. Tribology. 2010, 224, 377–393. [Google Scholar] [CrossRef]
- Huang, P.; Yang, Q. Theory and contents of frictional mechanics. Friction 2014, 2, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Wen, S.; Huang, P. Rolling Friction and Its Applications, in Principles of Tribology, 2nd ed.; Wiley: Beijing, China, 2018; pp. 252–281. [Google Scholar]
- Houpert, L. Numerical and Analytical Calculations in Ball Bearings. TIMKEN Research Europe. Available online: https://esmats.eu/esmatspapers/pastpapers/pdfs/1999/houpert.pdf (accessed on 25 January 2022).
- Yu, N.; Shang, J. Frictional torque analyzing and testing of Gimbaled-mirror seeker under changing environment temperature. Bull. Jpn. Soc. Mech. Eng. 2017, 11, JAMDSM0052. [Google Scholar] [CrossRef] [Green Version]
- Brossier, P. Combined Analytical and Empirical Modelling of Power Losses in Rolling Element Bearings. Mechanics [physics.med-ph]. Université de Lyon, 2020. NN: 2020LYSEI081. Available online: https://tel.archives-ouvertes.fr/tel-03127336/document (accessed on 25 January 2022).
- Kızılcık, H.S.; Aygün, M.; Şahin, E.; Önder-Çelikkanlı, N.; Türk, O.; Taşkın, T.; Güneş, B. Possible misconceptions about solid friction. Phys. Rev. Phys. Educ. Res. 2021, 17, 023107. [Google Scholar] [CrossRef]
- Vieira, F.G.; Scari, A.S.; Magalhães, P.A.A., Jr.; Martins, J.S.R.; Magalhães, C.A. Analysis of Stresses in a Tapered Roller Bearing Using Three-Dimensional Photoelasticity and Stereolithography. Materials 2019, 12, 3427. [Google Scholar] [CrossRef] [Green Version]
- Bonhomme, J.; Moll, V. A Method to Determine the Rolling Resistance Coefficient by Means of Uniaxial Testing Machines. Exp. Tech. 2015, 39, 37–41. [Google Scholar] [CrossRef]
- Olaru, D.; Stamate, C.; Dumitrascu, A.; Prisacaru, G. New micro tribometer for rolling friction. Wear 2011, 271, 842–852. [Google Scholar] [CrossRef]
- Koczan, G.M.; Ziomek, J. Research on rolling friction’s dependence on ball bearings’ radius, English translation. Przegląd Mech. 2018, 1, 21–26. [Google Scholar] [CrossRef]
- Chi, X.; Zhan, Q. Design and Modelling of an Amphibious Spherical Robot Attached with Assistant Fins. Appl. Sci. 2021, 11, 3739. [Google Scholar] [CrossRef]
- Ketterhagen, W.R.; Bharadwaj, R.; Hancock, B. The coefficient of rolling resistance (CoRR) of some pharmaceutical tablets. Int. J. Pharm. 2010, 392, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y.; Du, S.; Yang, Z.; He, T.; Li, Z. Study on the Tribological Performance of Copper-Based Powder Metallurgical Friction Materials with Cu-Coated or Uncoated Graphite Particles as Lubricants. Materials 2018, 11, 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madrid, M.A.; Fuentes, J.M.; Ayuga, F.; Gallego, E. Determination of the Angle of Repose and Coefficient of Rolling Friction for Wood Pellets. Agronomy 2022, 12, 424. [Google Scholar] [CrossRef]
- Cross, R. Physics of Baseball & Softball; Springer: New York, NY, USA, 2011; pp. 113–153. [Google Scholar]
- Jazar, R.N. Vehicle Dynamics: Theory and Applications; Springer: New York, NY, USA, 2008; pp. 114–165. [Google Scholar]
- Dzhilavdari, I.Z.; Riznookaya, N.N. An Experimental Assessment of the Components of Rolling Friction of Balls at Small Cyclic Displacements. J. Frict. Wear 2008, 29, 330–334. [Google Scholar] [CrossRef]
- Dzhilavdari, I.Z.; Riznookaya, N.N. Measurement of the friction characteristics on materials surfaces using the pendulum microoscillations method. J. Frict. Wear 2007, 28, 446–451. [Google Scholar] [CrossRef]
- Alaci, S.; Ciornei, F.C.; Ciogole, A.; Ciornei, M.C. Estimation of coefficient of rolling friction by the evolvent pendulum method. IOP Conf. Ser. Mater. Sci. Eng. 2017, 200, 0122005. [Google Scholar] [CrossRef] [Green Version]
- Dzhilavdari, I.Z.; Riznookaya, N.N. Features of Small Oscillations of Pendulum on Elastic Surface with Hysteresis Friction. J. Frict. Wear 2007, 28, 145–153. [Google Scholar] [CrossRef]
- Ciornei, F.C.; Pentiuc, R.D.; Alaci, S.; Romanu, I.C.; Siretean, S.T.; Ciornei, M.C. An improved technique of finding the coefficient of rolling friction by inclined plane method. IOP Conf. Ser. Mater. Sci. Eng. 2019, 514, 012004. [Google Scholar] [CrossRef]
- Cross, R. Rolling to a stop down an inclined plane. Eur. J. Phys. 2015, 36, 1–9. [Google Scholar] [CrossRef]
- Hertz, H. Über die Berührung fester elastischer Körper. J. Für Die Reine Und Angew. Math. 1881, 92, 156–171. [Google Scholar]
- Hills, D.A.; Nowell, D.; Sackfield, A. Elliptical contacts. In Mechanics of Elastic Contact; Butterworth Heinemann Ltd.: Oxford, UK, 1993; pp. 291–319. [Google Scholar]
- Voinea, R.; Voiculescu, D.; Simion, F.P. Introducere in Mecanica Solidului cu Aplicatii in Inginerie; Academiei RSR: Bucuresti, Romania, 1989; pp. 116–122. (In Romanian) [Google Scholar]
- Alaci, S.; Ciornei, F.-C.; Amarandei, D.; Irimescu, L.; Romanu, I.-C.; Rotar, M.-A. The effect of transport velocity upon spin torque. IOP Conf. Ser. Mater. Sci. Eng. 2017, 174, 012008. [Google Scholar] [CrossRef] [Green Version]
- Mangeron, D.; Irimiciuc, N. Mecanica Rigidelor cu Aplicatii in Inginerie Vol I; Rigidului, M., Ed.; Tehnica: Bucuresti, Romania, 1978; pp. 304–322. (In Romanian) [Google Scholar]
- Cherepanov, G.P. Theory of rolling: Solution of the Coulomb problem. J. Appl. Mech. Tech. Phys. 2014, 55, 182–189. [Google Scholar] [CrossRef]
- Kopchenova, N.V.; Maron, I.A. Approximate Solutions of Ordinary Differential Equations. In Computational Mathematics. Worked Examples and Problems with Elements of Theory, 3rd ed.; Mir Publishers: Moscow, Russia, 1984; pp. 198–243. [Google Scholar]
- Tabor, D. The Mechanism of Rolling Friction. II. The Elastic Range. Proc. R. Soc. Lond. 1955, 229, 198–220. [Google Scholar] [CrossRef]
- Ciornei, M.C.; Alaci, S.; Ciornei, F.C.; Romanu, I.C. A method for the determination of the coefficient of rolling friction using cycloidal pendulum. IOP Conf. Ser. MSE 2017, 227, 012027. [Google Scholar] [CrossRef] [Green Version]
- Nakhatakyan, F. Edge effect in the process of contact interaction of two cylinders with different lengths. J. Mach. Manuf. Reliab. 2012, 41, 39–42. [Google Scholar] [CrossRef]
- McCarthy, J.M.; Soh, G.S. Spherical kinematics. In Geometric Design of Linkages (Interdisciplinary Applied Mathematics), 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 179–201. [Google Scholar]
- Beer, F.; Johnston, R.; Mazurek, D.; Eisenberg, E. Vector Mechanics for Engineers: Statics, 9th ed.; McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- Uicker, J.J., Jr.; Pennock, G.R.; Shigley, J.E. The World of Mechanisms. In Theory of Machines and Mechanisms, 5th ed.; Oxford University Press: Oxford, UK, 2003; pp. 3–32. [Google Scholar]
- Fischer, I. Coordinate transformation. In Dual-Number Methods in Kinematics, Statics and Dynamics; CRC Press: Boca Raton, FL, USA, 1998; pp. 9–40. [Google Scholar]
- Kosmol, J. Modeling of Heat Phenomenon in Rolling Kinematic Pairs Using the Finite Element Method. Appl. Sci. 2021, 11, 6447. [Google Scholar] [CrossRef]
- Sun, T.; Wang, M.; Gao, X.; Zhao, Y. Non-Hertzian Elastohydrodynamic Contact Stress Calculation of High-Speed Ball Screws. Appl. Sci. 2021, 11, 12081. [Google Scholar] [CrossRef]
- Narayanan, P.; Rostamian, R.; Tasch, U.; Lefcourt, A.M.; Kim, M.S. Rolling Dynamics of an Inhomogeneous Ball on an Inclined Track. Available online: https://userpages.umbc.edu/~rostamia/pubs/rolling-ball.pdf (accessed on 25 January 2022).
No. | Part | Sa | Sq |
---|---|---|---|
1 | Aluminum plate | 1.255 µm | 5.340 µm |
2 | 1.186 µm | 1.541 µm | |
3 | 1.415 µm | 5.820 µm | |
1 | Steel ball | 1.203 µm | 4.818 µm |
2 | 0.999 µm | 2.447 µm | |
3 | 1.415 µm | 5.820 µm |
No. | Part | Ra | Rz | Rt | Rq |
---|---|---|---|---|---|
1 | Aluminum plate | 1.776 µm | 11.220 µm | 16.256 µm | 2.342 µm |
2 | 1.263 µm | 9.277 µm | 11.337 µm | 1.629 µm | |
3 | 2.165 µm | 13.566 µm | 13.566 µm | 2.639 µm | |
1 | Steel ball | 0.209 µm | 2.453 µm | 3.889 µm | 0.330 µm |
2 | 0.230 µm | 1.109 µm | 2.553 µm | 0.329 µm | |
3 | 0.192 µm | 2.137 µm | 3.948 µm | 0.290 µm |
Asymmetrical Rotor Frame Index | Symmetrical Rotor Frame Index | |||||
---|---|---|---|---|---|---|
No. | Test 1 as | Test 2 as | Test 3 as | Test 1 s | Test 2 s | Test 3 s |
1 | 2071 | 231 | 45 | 965 | 1 | 1226 |
2 | 2200 | 375 | 175 | 1082 | 113 | 1351 |
3 | 2263 | 433 | 234 | 1137 | 168 | 1406 |
4 | 2307 | 477 | 278 | 1183 | 213 | 1451 |
5 | 2348 | 516 | 317 | 1223 | 256 | 1492 |
6 | 2384 | 552 | 354 | 1257 | 291 | 1526 |
7 | 2417 | 574 | 386 | 1288 | 323 | 1558 |
8 | 2447 | 614 | 416 | 1318 | 352 | 1587 |
9 | 2475 | 641 | 445 | 1344 | 379 | 1614 |
10 | 2500 | 667 | 472 | 1371 | 404 | 1639 |
11 | 2526 | 692 | 498 | 1395 | 429 | 1663 |
12 | 2550 | 715 | 523 | 1417 | 451 | 1686 |
13 | 2573 | 737 | 546 | 1439 | 473 | 1707 |
14 | 2596 | 760 | 569 | 1461 | 494 | 1729 |
15 | 2618 | 782 | 591 | 1481 | 515 | 1749 |
16 | 2639 | 803 | 612 | 1501 | 535 | 1769 |
17 | 2660 | 823 | 633 | 1521 | 554 | 1789 |
18 | 2681 | 844 | 654 | 1540 | 573 | 1808 |
19 | 2701 | 864 | 673 | 1559 | 591 | 1826 |
20 | 2721 | 884 | 693 | 1577 | 600 | 1844 |
21 | 2740 | 903 | 713 | 1595 | 627 | 1864 |
22 | 2760 | 922 | 732 | 1613 | 645 | 1869 |
23 | 2780 | 941 | 751 | 1638 | 664 | 1896 |
24 | 2799 | 951 | 770 | 1647 | 678 | 1912 |
25 | 2818 | 978 | 788 | 1667 | 695 | 1928 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alaci, S.; Ciornei, F.-C.; Romanu, I.-C. Validation of Nonlinear Dependence of Rolling Friction Moment on the Normal Force for Elastic Materials. Materials 2022, 15, 2518. https://doi.org/10.3390/ma15072518
Alaci S, Ciornei F-C, Romanu I-C. Validation of Nonlinear Dependence of Rolling Friction Moment on the Normal Force for Elastic Materials. Materials. 2022; 15(7):2518. https://doi.org/10.3390/ma15072518
Chicago/Turabian StyleAlaci, Stelian, Florina-Carmen Ciornei, and Ionut-Cristian Romanu. 2022. "Validation of Nonlinear Dependence of Rolling Friction Moment on the Normal Force for Elastic Materials" Materials 15, no. 7: 2518. https://doi.org/10.3390/ma15072518
APA StyleAlaci, S., Ciornei, F. -C., & Romanu, I. -C. (2022). Validation of Nonlinear Dependence of Rolling Friction Moment on the Normal Force for Elastic Materials. Materials, 15(7), 2518. https://doi.org/10.3390/ma15072518