Red Display for Three-Color Electrophoretic Displays with High Saturation via a Separation Stage between Black and Red Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials of Three-Color EPDs
2.2. Design of Driving Schemes
2.3. Experimental Method
3. Results and Discussion
3.1. Driving Scheme Parameters Analysis
3.2. Performance Comparison of Driving Schemes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.K.; Kim, S.S.; Park, Y.I.; Kim, C.D.; Hwang, Y.K. In-cell adaptive touch technology for a flexible e-paper display. Solid State Electron. 2011, 56, 159–162. [Google Scholar] [CrossRef]
- Zeng, W.J.; Yi, Z.C.; Zhao, Y.M.; Zeng, W.B.; Ma, S.M.; Zhou, X.C.; Feng, H.Q.; Liu, L.M.; Shui, L.L.; Zhang, C.F.; et al. Design of Driving Waveform Based on Overdriving Voltage for Shortening Response Time in Electrowetting Displays. Front. Phys. 2021, 9, 642682. [Google Scholar] [CrossRef]
- Comiskey, B.; Albert, J.D.; Yoshizawa, H.; Jacobson, J. An electrophoretic ink for all-printed reflective electronic displays. Nature 1998, 394, 253–255. [Google Scholar] [CrossRef]
- Yi, Z.C.; Shui, L.L.; Wang, L.; Jin, M.L.; Hayes, R.A.; Zhou, G.F. A novel driver for active matrix electrowetting displays. Displays 2015, 37, 86–93. [Google Scholar] [CrossRef]
- Bai, P.; Hayes, R.; Jin, M.; Shui, L.; Yi, Z.; Wang, L.; Zhang, X.; Zhou, G. Review of Paper-Like Display Technologies. Prog. Electromagn. Res. 2014, 147, 95–116. [Google Scholar] [CrossRef] [Green Version]
- Kao, W.C.; Tsai, J.C. Driving method of three particle electrophoretic displays. IEEE Trans. Electron. Dev. 2018, 65, 1023–1028. [Google Scholar] [CrossRef]
- Takeoka, Y. Stimuli-responsive opals: Colloidal crystals and colloidal amorphous arrays for use in functional structurally colored materials. J. Mater. Chem. C 2013, 1, 6059–6074. [Google Scholar] [CrossRef]
- Yi, Z.; Huang, Z.; Lai, S.; He, W.; Wang, L.; Chi, F.; Zhang, C.; Shui, L.; Zhou, G. Driving Waveform Design of Electrowetting Displays Based on an Exponential Function for a Stable Grayscale and a Short Driving Time. Micromachines 2020, 11, 313. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.C. An analysis of reflectivity and response time by charge-to-mass of charged particles in an electrophoretic displays. Trans. Electr. Electron. Mater. 2016, 17, 212–216. [Google Scholar] [CrossRef] [Green Version]
- Duan, F.B.; Bai, P.F.; Henzen, A.; Shui, L.L.; Tang, B.A.; Zhou, G.F. An adaptive generation method for electrophoretic display driving waveform design. J. Soc. Inf. Disp. 2016, 24, 676–685. [Google Scholar] [CrossRef]
- Jin, M.L.; Shen, S.T.; Yi, Z.C.; Zhou, G.F.; Shui, L.L. Optofluid-Based Reflective Displays. Micromachines 2018, 9, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, Z.C.; Bai, P.F.; Wang, L.; Zhang, X.; Zhou, G.F. An electrophoretic display driving waveform based on improvement of activation pattern. J. Cent. South Univ. 2014, 21, 3133–3137. [Google Scholar] [CrossRef]
- Lu, C.M.; Wey, C.L. A Controller Design for Micro-Capsule Active Matrix Electrophoretic Displays. J. Inf. Disp. 2011, 7, 434–442. [Google Scholar] [CrossRef]
- Shen, S.T.; Gong, Y.X.; Jin, M.L.; Yan, Z.B.; Xu, C.; Yi, Z.C.; Zhou, G.F.; Shui, L.L. Improving electrophoretic particle motion control in electrophoretic displays by eliminating the fringing effect via driving waveform design. Micromachines 2018, 9, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, J.X.; Qin, Z.; Zeng, Z.; Hu, W.J.; Song, L.Y.; Hu, D.L.; Wang, X.D.; Zeng, X.; Chen, Y.; Yang, B.R. A convolutional neural network for ghost image recognition and waveform design of electrophoretic displays. IEEE Trans. Consum. Electron. 2020, 66, 356–365. [Google Scholar] [CrossRef]
- Wang, L.; Yi, Z.C.; Peng, B.; Zhou, G.F. An improved driving waveform reference grayscale of electrophoretic display. In AOPC 2015: Advanced Display Technology; and Micro/Nano Optical Imaging Technologies and Applications; SPIE Press: Bellingham, WA, USA, 2015. [Google Scholar] [CrossRef]
- Wu, M.; Luo, Y.; Wu, F.; Chen, Y.; Wang, X.; Zeng, X. Lifetime prediction model of electrophoretic display based on high temperature and high humidity test. J. Soc. Inf. Disp. 2020, 28, 731–743. [Google Scholar] [CrossRef]
- Zeng, W.J.; Yi, Z.C.; Zhou, X.C.; Zhao, Y.M.; Feng, H.Q.; Yang, J.J.; Liu, L.M.; Chi, F.; Zhang, C.F.; Zhou, G.F. Design of Driving Waveform for Shortening Red Particles Response Time in Three-Color Electrophoretic Displays. Micromachines 2021, 12, 578. [Google Scholar] [CrossRef]
- Zhang, H.; Yi, Z.C.; Ma, S.M.; Deng, S.N.; Zhou, W.B.; Zeng, W.J.; Liu, L.M.; Chi, F.; Hu, Y.F.; Zhang, C.F.; et al. Design of Driving Waveform for Shortening Response Time of Black Particles and White Particles in Three-Color Electrophoretic Displays. Micromachines 2021, 12, 1306. [Google Scholar] [CrossRef]
- Kim, J.M.; Kwangjoon, K.; Seung-Woo, L. Multilevel driving waveform for electrophoretic displays to improve grey levels and response characteristics. Electron. Lett. 2014, 50, 1925–1927. [Google Scholar] [CrossRef]
- Yi, Z.; Zeng, W.; Ma, S.; Feng, H.; Zeng, W.; Shen, S.; Shui, L.; Zhou, G.; Zhang, C. Design of Driving Waveform Based on a Damping Oscillation for Optimizing Red Saturation in Three-Color Electrophoretic Displays. Micromachines 2021, 12, 162. [Google Scholar] [CrossRef]
- He, W.Y.; Yi, Z.C.; Shen, S.T.; Huang, Z.Y.; Liu, L.W.; Zhang, T.Y.; Li, W. Driving waveform design of electrophoretic display based on optimized particle activation for a rapid response speed. Micromachines 2020, 11, 498. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yi, Z.C.; Jin, M.L.; Shui, L.L.; Zhou., G.F. Improvement of video playback performance of electrophoretic displays by optimized waveforms with shortened refresh time. Displays 2017, 49, 95–100. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Zhen, B.; Li, R.N.; Meng, S.X.; Li, X.G.; Feng, Y.Q. Low density and fast response silica coated with ionic liquid polymer nanoparticles towards electrophoretic displays. Mater. Lett. 2018, 211, 17–20. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, A.; Jiang, Y.F.; Lan, D.S.; Lu, F.H.; Zheng, L.L.; Zhuang, L.; Hong, R.J. Large-scale preparation of size-controlled Fe3O4@SiO2 particles for electrophoretic display with non-irdescent structural colors. RSC Adv. 2019, 9, 498–506. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Al-Shujaa, S.A.S.; Zhen, B.; Zhang, Y.; Li, X.; Feng, Y. Blue nanocomposites coated with an ionic liquid polymer for electrophoretic displays. RSC Adv. 2021, 11, 20760–20768. [Google Scholar] [CrossRef]
- Robben, B.; Beunis, F.; Neyts, K.; Fleming, R.; Sadlik, B.; Johansson, T.; Whitehead, L.; Strubbe, F. Electrodynamics of Electronic Paper Based on Total Internal Reflection. Phys. Rev. Appl. 2018, 10, 034041. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Jin, M.L.; Gong, Y.X.; Li, H.; Wu, S.J.; Zhang, Z.; Zhou, G.F.; Shui, L.L.; Eijkel, J.C.T.; van der Berg, A. Continuous fabrication of microcapsules with controllable metal covered nanoparticle arrays using droplet microfluidics for localized surface plasmon resonance. Lab Chip 2017, 17, 1970–1979. [Google Scholar] [CrossRef]
- Li, H.; Li, R.H.; Jiang, H.W.; Fang, X.T.; Yin, X.Z.; Zhou, R. Fabrication and evaluation of flexible electrowetting display with support pillars. Nanoscale Adv. 2020, 2, 4077–4084. [Google Scholar] [CrossRef]
- Nucara, L.; Greco, F.; Mattoli, V. Electrically responsive photonic crystals: A review. J. Mater. Chem. C 2015, 3, 8449–8467. [Google Scholar] [CrossRef]
- Bukosky, S.C.; Hammons, J.A.; Giera, B.; Lee, E.; Han, J.; Freyman, M.C.; Ivanovskaya, A.; Krauter, K.G.; Kuntz, J.D.; Worseley, M.A.; et al. Correlating dynamic microstructure to observed color in electrophoretic displays via in situ small-angle x-ray scattering. Phys. Rev. Mater. 2020, 4, 075802. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Zhen, B.; Al-Shuja’a, S.A.S.; Zhou, G.Y.; Li, X.G.; Feng, Y.Q. Fast-response and monodisperse silica nanoparticles modified with ionic liquid towards electrophoretic displays. Dye. Pigment. 2018, 148, 270–275. [Google Scholar] [CrossRef]
- Lu, C.M.; Wey, C.L. A controller design for high-quality images on microcapsule active-matrix electrophoretic displays. J. Inf. Disp. 2012, 13, 21–30. [Google Scholar] [CrossRef]
- Bert, T.; De Smet, H.; Beunis, F.; Neyts, K. Complete electrical and optical simulation of electronic paper. J. Disp. Technol. 2006, 27, 50–55. [Google Scholar] [CrossRef]
- Kang, H.; Kim, C.; Lee, S.; Shin, Y.; Lee, Y.; Kim, Y.; Ju, B. Analysis of Particle Movement by Dielectrophoretic Force for Reflective Electronic Display. J. Disp. Technol. 2016, 12, 747–752. [Google Scholar] [CrossRef]
- Bert, T.; De, S.H. The microscopic physics of eletronic paper revealed. Displays 2003, 24, 103–110. [Google Scholar] [CrossRef]
) | Color State | Resolution | Voltage (V) | Response Time (s) | |
---|---|---|---|---|---|
Black, white, red |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zeng, W.; Long, Z.; Yi, Z.; Bai, P.; Tang, B.; Yuan, D.; Zhou, G. Red Display for Three-Color Electrophoretic Displays with High Saturation via a Separation Stage between Black and Red Particles. Materials 2022, 15, 2555. https://doi.org/10.3390/ma15072555
Liu L, Zeng W, Long Z, Yi Z, Bai P, Tang B, Yuan D, Zhou G. Red Display for Three-Color Electrophoretic Displays with High Saturation via a Separation Stage between Black and Red Particles. Materials. 2022; 15(7):2555. https://doi.org/10.3390/ma15072555
Chicago/Turabian StyleLiu, Linwei, Wenjun Zeng, Zhengxing Long, Zichuan Yi, Pengfei Bai, Biao Tang, Dong Yuan, and Guofu Zhou. 2022. "Red Display for Three-Color Electrophoretic Displays with High Saturation via a Separation Stage between Black and Red Particles" Materials 15, no. 7: 2555. https://doi.org/10.3390/ma15072555
APA StyleLiu, L., Zeng, W., Long, Z., Yi, Z., Bai, P., Tang, B., Yuan, D., & Zhou, G. (2022). Red Display for Three-Color Electrophoretic Displays with High Saturation via a Separation Stage between Black and Red Particles. Materials, 15(7), 2555. https://doi.org/10.3390/ma15072555