Role of Different Material Amendments in Shaping the Content of Heavy Metals in Maize (Zea mays L.) on Soil Polluted with Petrol
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Methodological Assumptions of the Research
2.2. Methodology of the Laboratory and Statistical Analyses
3. Results
3.1. The Impact of Petrol Contamination on Plants
3.2. The Impact of Materials Application on Plants on Soil Contaminated with Petrol
4. Discussion
4.1. The Impact of Petrol Contamination on Plants
4.2. The Impact of Materials Application on Plants on Soil Contaminated with Petrol
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeung, C.W.; Law, B.A.; Milligan, T.G.; Lee, K.; Whyte, L.G.; Greer, C.W. Analysis of bacterial diversity and metals in produced water, seawater and sediments from an offshore oil and gas production platform. Mar. Pollut. Bull. 2011, 62, 2095–2105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, J.; Yu, Y.; Bai, Y.; Wang, L.; Wu, Y. Marine oil-degrading microorganisms and biodegradation process of petroleum hydrocarbon in marine environments: A review. Curr. Microbiol. 2015, 71, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Albert, E.; Tanee, F.B.G. A laboratory trial of bioaugmentation for removal of total petroleum hydrocarbon (TPH) in Niger Delta soil using Oscillatoria bornettia. J. Microbiol. Biotechnol. 2011, 1, 147–168. [Google Scholar]
- Ou, S.; Zheng, J.; Zheng, J.; Richardson, B.J.; Lam, P.K.S. Petroleum hydrocarbons and polycyclic aromatic hydrocarbons in the surficial sediments of Xiamen Harbour and Yuan Dan Lake, China. Chemosphere 2004, 56, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Lipińska, A.; Wyszkowska, J.; Kucharski, J. Diversity of organotrophic bacteria, activity of dehydrogenases and urease as well as seed germination and root growth Lepidium sativum, Sorghum saccharatum and Sinapis alba under the influence of polycyclic aromatic hydrocarbons. Environ. Sci. Pollut. Res. 2015, 22, 18519–18530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borowik, A.; Wyszkowska, J.; Kucharski, M.; Kucharski, J. Implications of soil pollution with diesel oil and BP petroleum with active technology for soil health. Int. J. Environ. Res. Public Health 2019, 16, 2474. [Google Scholar] [CrossRef] [Green Version]
- Wyszkowski, M.; Ziółkowska, A. The importance of relieving substances in restricting the effect of soil contamination with oil derivatives on plants. Fresen. Environ. Bull. 2011, 20, 711–719. [Google Scholar]
- Shen, Y.; Ji, Y.; Li, C.; Luo, P.; Wang, W.; Zhang, Y.; Nover, D. Effects of phytoremediation treatment on bacterial community structure and diversity in different petroleum-contaminated soils. Int. J. Environ. Res. Public Health 2018, 15, 2168. [Google Scholar] [CrossRef] [Green Version]
- Gospodarek, J.; Rusin, M.; Nadgórska-Socha, A. Effect of petroleum-derived substances and their bioremediation on Triticum aestivum L. growth and chemical composition. Pol. J. Environ. Stud. 2019, 28, 2131–2137. [Google Scholar] [CrossRef]
- Koshlaf, E.; Ball, S. Soil bioremediation approaches for petroleum hydrocarbon polluted environments. AIMS Microbiol. 2017, 3, 25–49. [Google Scholar] [CrossRef]
- Galitskaya, P.; Biktasheva, L.; Blagodatsky, S.; Selivanovskaya, S. Response of bacterial and fungal communities to high petroleum pollution in different soils. Sci. Rep. 2021, 11, 164. [Google Scholar] [CrossRef] [PubMed]
- Militon, C.; Boucher, D.; Vachelard, C.; Perchet, G.; Barra, V.; Troquet, J.; Peyretaillade, E.; Peyret, P. Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil. Fems Microbiol. Ecol. 2010, 74, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Liu, Z.; Jia, X.; Lu, W. Distribution of bacterial communities in petroleum-contaminated soils from the Dagang Oilfield, China. Trans. Tianjin Univ. 2020, 26, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Borowik, A.; Wyszkowska, J.; Kucharski, J. Microbiological study in petrol-spiked soil. Molecules 2021, 26, 2664. [Google Scholar] [CrossRef]
- Souza, E.C.; Vessoni-Penna, T.C.; de Souza Oliveira, R.P. Biosurfactant-enhanced hydrocarbon bioremediation: An overview. Int. Biodeterior. Biodegrad. 2014, 89, 88–94. [Google Scholar] [CrossRef]
- Skrypnik, L.; Maslennikov, P.; Novikova, A.; Kozhikin, M. Effect of crude oil on growth, oxidative stress and response of antioxidative system of two rye (Secale cereale L.) varieties. Plants 2021, 10, 157. [Google Scholar] [CrossRef]
- Schoonover, J.E.; Crim, J.F. An Introduction to soil concepts and the role of soils in watershed management. J. Contemp. Water Res. Educ. 2015, 154, 21–47. [Google Scholar] [CrossRef]
- Hu, M. Environmental behavior of petroleum in soil and its harmfulness analysis. IOP Conf. Ser. Earth Environ. Sci. 2020, 450, 012100. [Google Scholar] [CrossRef]
- Gao, Y.; Guo, S.; Wang, J.; Li, D.; Wang, H.; Zeng, D.H. Effects of different remediation treatments on crude oil contaminated saline soil. Chemosphere 2014, 117, 486–493. [Google Scholar] [CrossRef]
- Mena, E.; Villaseñor, J.; Rodrigo, M.A.; Cañizares, P. Electrokinetic remediation of soil polluted with insoluble organics using biological permeable reactive barriers: Effect of periodic polarity reversal and voltage gradient. Chem. Eng. J. 2016, 299, 30–36. [Google Scholar] [CrossRef]
- Cadar, O.; Dinca, Z.; Senila, M.; Torok, A.I.; Todor, F.; Levei, E.A. Immobilization of potentially toxic elements in contaminated soils using thermally treated natural zeolite. Materials 2021, 14, 3777. [Google Scholar] [CrossRef] [PubMed]
- Peretiemo-Clarke, B.O.; Achuba, F.I. Phytochemical effect of petroleum on peanut (Arachis hypogea) seedlings. Plant Pathol. J. 2007, 6, 179–182. [Google Scholar] [CrossRef] [Green Version]
- Bellout, Y.; Khelif, L.; Guivarch, A.; Haouche, L.; Djebbar, R.; Carol, P.; Abrous Belbachir, O. Impact of edaphic hydrocarbon pollution on the morphology and physiology of pea roots (Pisum sativum L.). Appl. Ecol. Environ. Res. 2016, 14, 511–525. [Google Scholar] [CrossRef]
- Athar, H.-R.; Ambreen, S.; Javed, M.; Hina, M.; Rasul, S.; Zafar, Z.U.; Manzoor, H.; Ogbaga, C.C.; Afzal, M.; Al-Qurainy, F.; et al. Influence of sub-lethal crude oil concentration on growth, water relations and photosynthetic capacity of maize (Zea mays L.) plants. Environ. Sci. Pollut. Res. 2016, 23, 18320–18331. [Google Scholar] [CrossRef]
- Otitoju, O.; Udebuani, A.C.; Ebulue, M.M.; Onwurah, I.N. Enzyme-based assay for toxicological evaluation of soil ecosystem polluted with spent engine oil. Agric. Ecol. Res. Int. J. 2017, 11, 27605. [Google Scholar] [CrossRef]
- Achuba, F.I.; Ja-anni, M.O. Effect of abattoir waste water on metabolic and antioxidant profiles of cowpea seedlings grown in crude oil contaminated soil. Int. J. Recycl. Org. Waste Agric. 2018, 7, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Odukoya, J.; Lambert, R.; Sakrabani, R. Impact of crude oil on yield and phytochemical composition of selected green leafy vegetables. Int. J. Veg. Sci. 2019, 25, 554–570. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Ziółkowska, A. Role of compost, bentonite and calcium oxide in restricting the effect of soil contamination with petrol and diesel oil on plants. Chemosphere 2009, 74, 860–865. [Google Scholar] [CrossRef]
- Rusin, M.; Gospodarek, J.; Barczyk, G.; Nadgórska-Socha, A. Antioxidant responses of Triticum aestivum plants to petroleum derived substances. Ecotoxicology 2018, 27, 1353–1367. [Google Scholar] [CrossRef] [Green Version]
- Kucharski, J.; Tomkiel, M.; Boros, E.; Wyszkowska, J. The effect of soil contamination with diesel oil and petrol on the nitrification process. J. Elem. 2010, 15, 111–118. [Google Scholar] [CrossRef]
- Sui, X.; Wang, X.; Li, Y.; Ji, H. Remediation of petroleum-contaminated soils with microbial and microbial combined methods: Advances, mechanisms, and challenges. Sustainability 2021, 13, 9267. [Google Scholar] [CrossRef]
- Ogboghodo, I.A.; Erebor, E.B.; Osemwota, I.O.; Isitekhale, H.H. The effects of application of poultry manure to crude oil polluted soils on maize (Zea mays) growth and soil properties. Environ. Monit. Assess. 2004, 96, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Touceda-González, M.; Álvarez-López, V.; Prieto-Fernández, Á.; Rodríguez-Garrido, B.; Trasar-Cepeda, C.; Mench, M.; Puschenreiter, M.; Quintela-Sabarís, C.; Macías-García, F.; Kidd, P.S. Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings. J. Environ. Manag. 2017, 186, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H.; Dunst, G.; Glaser, B. Positive effects of composted biochar on plant growth and soil fertility. Agron. Sustain. Dev. 2013, 33, 817–827. [Google Scholar] [CrossRef] [Green Version]
- Wyszkowski, M.; Radziemska, M. The effect of chromium (III) and chromium (VI) on the yield and content of nitrogen compounds in plants. J. Toxicol. Environ. Health Part A 2010, 73, 1274–1282. [Google Scholar] [CrossRef]
- Zhang, J.; Kong, C.; Yang, M.; Zang, L. Comparison of calcium oxide and calcium peroxide pretreatments of wheat straw for improving biohydrogen production. ACS Omega 2020, 5, 9151–9161. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, W.; Zhao, B.; Phillips, L.A.; Zhou, Y.; Lapen, D.R.; Liu, J. Sandy soils amended with bentonite induced changes in soil microbiota and fungistasis in maize fields. Appl. Soil Ecol. 2020, 146, 103378. [Google Scholar] [CrossRef]
- Feng, N.; Dagan, R.; Bitton, G. Toxicological approach for assessing the heavy metal binding capacity of soils. Soil Sediment Contam. 2007, 16, 451–458. [Google Scholar] [CrossRef]
- Czaban, J.; Siebielec, G. Effects of bentonite on sandy soil chemistry in a long-term plot experiment (II); Effect on pH, CEC, and macro- and micronutrients. Pol. J. Environ. Stud. 2013, 22, 1669–1676. [Google Scholar]
- Alvarenga, P.; Gonçalves, A.P.; Fernandes, R.M.; De Varennes, A.; Vallini, G.; Duarte, E.; Cunha-Queda, A.C. Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics. Chemosphere 2009, 74, 1292–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, H.; Pinchin, T.A.; Macfie, S.M. Compost application affects metal uptake in plants grown in urban garden soils and potential human health risk. J. Soils Sediment. 2011, 11, 815–829. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.R.; Oste, L. In situ immobilization of metals in contaminated or naturally metal-rich soils. Environ. Rev. 2001, 9, 81–97. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int. Sch. Res. Not. 2011, 2011, 402647. [Google Scholar] [CrossRef] [Green Version]
- Lwin, C.S.; Seo, B.-H.; Kim, H.-U.; Owens, G.; Kim, K.-R. Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—A critical review. Soil Sci. Plant Nut. 2018, 64, 156–167. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014; World Soil Resources Report; International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Update 2015; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; p. 182. Available online: https://www.fao.org/3/i3794en/I3794en.pdf (accessed on 26 November 2021).
- US-EPA Method 3051A. Microwave Assisted Acid Digestion of Sediment, Sludges, Soils, and Oils; United States Environmental Protection Agency: Washington, DC, USA, 2007; pp. 1–30. Available online: https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf (accessed on 24 June 2021).
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods for Analysis and Evaluation of Soil and Plant Properties; Institute of Environmental Protection: Warsaw, Poland, 1991; pp. 1–334. [Google Scholar]
- ISO 10390; Soil Quality—Determination of pH. International Organization for Standardization: Geneva, Switzerland, 2005.
- Carter, M.R.; Gregorich, E.G. Soil Sampling and Methods of Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008; p. 1224. [Google Scholar]
- Egner, H.; Riehm, H.; Domingo, W.R. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extractionsmethoden zur Phospor-und Kaliumbestimmung. Ann. R. Agric. Coll. Swed. 1960, 26, 199–215. [Google Scholar]
- Schlichting, E.; Blume, H.P.; Stahr, K. Bodenkundliches Praktikum. Pareys Studientexte 81; Blackwell Wissenschafts-Verlag: Berlin, Germany, 1995. [Google Scholar]
- TIBCO Software Inc. Statistica Version 13; Data Analysis Software System; Tibco Software Inc.: Palo Alto, CA, USA, 2021; Available online: http://statistica.io (accessed on 26 November 2021).
- Shukry, W.M.; Al-Hawas, G.H.S.; Al-Moaik, R.M.S.; El-Bendary, M.A. Effect of petroleum crude oil on mineral nutrient elements and soil properties of jojoba plant (Simmondsia chinensis). Acta Bot. Hung. 2013, 55, 117–133. [Google Scholar] [CrossRef]
- Gospodarek, J.; Rusin, M.; Kandziora-Ciupa, M.; Nadgórska-Socha, A. The subsequent effects of soil pollution by petroleum products and its bioremediation on the antioxidant response and content of elements in Vicia faba plants. Energies 2021, 14, 7748. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Wyszkowska, J.; Borowik, A.; Kordala, N. Sewage sludge as a tool in limiting the content of trace elements in Avena sativa. Materials 2021, 14, 4003. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Wyszkowska, J.; Kordala, N.; Borowik, A. Applicability of ash wastes for reducing trace element content in Zea mays L. grown in Eco-Diesel contaminated soil. Molecules 2022, 27, 897. [Google Scholar] [CrossRef]
- Ujowundu, C.O.; Kalu, F.N.; Nwaoguikpe, R.N.; Kalu, O.I.; Ihejirika, C.E.; Nwosunjoku, E.C.; Okechukwu, R.I. Biochemical and physical characterization of diesel petroleum contaminated soil in southeastern Nigeria. Res. J. Chem. Sci. 2011, 1, 57–62. [Google Scholar]
- Gbadebo, A.M.; Adenuga, M.D. Effect of crude oil on the emergence and growth of cowpea in two contrasting soil types from Abeokuta, Southwestern Nigeria. Asian. J. Appl. Sci. 2012, 5, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Rusin, M.; Gospodarek, J.; Nadgórska-Socha, A.; Barczyk, G.; Boligłowa, E.; Dabioch, M. Effect of petroleum-derived substances on life history traits of bird cherry-oat aphid (Rhopalosiphum padi L.) and on the growth and chemical composition of winter wheat. Environ. Sci. Pollut. Res. 2018, 25, 27000–27012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martí, M.C.; Camejo, D.; Fernández-García, N.; Rellán-Álvarez, R.; Marques, S.; Sevilla, F.; Jiménez, A. Effect of oil refinery sludges on the growth and antioxidant system of alfalfa plants. J. Hazard. Mater. 2009, 171, 879–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gospodarek, J.; Rusin, M.; Nadgórska-Socha, A. The long-term effect of petroleum-derived substances and their bioremediation on the host plant (Vicia faba L.) and a herbivore (Sitona spp.). Agronomy 2020, 10, 1066. [Google Scholar] [CrossRef]
- Santos-Echeandia, J.; Prego, R.; Cobelo-Garcia, A. Influence of the heavy fuel spill from the Prestige tanker wreckage in the overlying seawater column levels of copper, nickel and vanadium (NE Atlantic ocean). J. Mar. Syst. 2008, 72, 350–357. [Google Scholar] [CrossRef]
- Paltseva, A.; Cheng, Z.; Deeb, M.; Groffman, P.M.; Shaw, R.K.; Maddaloni, M. Accumulation of arsenic and lead in garden-grown vegetables: Factors and mitigation strategies. Sci. Total Environ. 2018, 640, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Nwaichi, E.O.; Wegwu, M.O.; Nwosu, U.L. Distribution of selected carcinogenic hydrocarbon and heavy metals in an oil-polluted agriculture zone. Environ. Monit. Assess. 2014, 86, 8697–8706. [Google Scholar] [CrossRef] [Green Version]
- Gospodarek, J.; Nadgórska-Socha, A. Chemical composition of broad beans (Vicia faba L.) and development parameters of black bean aphid (Aphis fabae Scop.) under conditions of soil contamination with oil derivatives. J. Elem. 2016, 21, 1359–1376. [Google Scholar] [CrossRef]
- Kumpiene, J.; Guerri, G.; Landi, L.; Pietramellara, G.; Nannipieri, P.; Renella, G. Microbial biomass, respiration and enzyme activities after in situ aided phytostabilization of a Pb- and Cu-contaminated soil. Ecotoxicol. Environ. Saf. 2009, 72, 115–119. [Google Scholar] [CrossRef]
- Kumpiene, J. Trace elements immobilization in soil using amendments. In Trace Elements in Soil; Hooda, P.S., Ed.; John Wiley and Sons, Ltd.: Chichester, UK, 2010; pp. 353–379. [Google Scholar]
- Clemente, R.; Walker, D.J.; Pardo, T.; Martínez-Fernández, D.; Bernal, M.P. The use of a halophytic plant species and organic amendments for the remediation of a trace elements-contaminated soil under semi-arid conditions. J. Hazard. Mater. 2012, 223, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Zornoza, R.; Faz, A.; Carmona, D.M.; Martínez-Martínez, S.; Acosta, J.A. Plant cover and soil biochemical properties in a mine tailing pond five years after application of marble wastes and organic amendments. Pedosphere 2012, 22, 22–32. [Google Scholar] [CrossRef]
- Gitipour, S.; Bowers, M.T.; Bodocsi, A. The use of modified bentonite for removal of aromatic organics from contaminated soil. J. Colloid Interface Sci. 1997, 196, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.A.; Bartelt-Hunt, S.L.; Burns, S.E. Sorption and permeability of gasoline hydrocarbons in organobentonite porous media. J. Hazard Mater. 2003, 96, 91–97. [Google Scholar] [CrossRef]
- Bertagnolli, C.; da Silva, M.G.C. Characterization of Brazilian bentonite organoclays as sorbents of petroleum-derived fuels. Mater. Res. 2012, 15, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Shackelford, C.D.; Jefferis, S.A. Geoenvironmental engineering for in situ remediation. Proc. Int. Geotechncial Geol. Conf. Geoeng. 2000, 1, 1–65. [Google Scholar]
- Wyszkowski, M.; Ziółkowska, A. Content of polycyclic aromatic hydrocarbons in soils polluted with petrol and diesel oil after remediation with plants and various substances. Plant Soil Environ. 2013, 59, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Wyszkowski, M.; Sivitskaya, V. Effect of sorbents on the content of trace elements in maize cultivated on soil contaminated with heating oil. Int. Agrophys. 2019, 33, 437–444. [Google Scholar] [CrossRef]
- Castaldi, P.; Santona, L.; Melis, P. Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere 2005, 60, 365–371. [Google Scholar] [CrossRef]
- Kosiorek, M.; Wyszkowski, M. Trace element contents in spring barley (Hordeum vulgare L.) and white mustard (Synapis alba L.) following the remediation of cobalt-contaminated soil. Int. J. Phytoremediation 2021, 23, 669–683. [Google Scholar] [CrossRef]
- Barker, A.V.; Pilbeam, D.J. Handbook of Plant Nutrition, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Radziemska, M.; Wyszkowski, M.; Bęś, A.; Mazur, Z.; Jeznach, J.; Brtnický, M. The applicability of compost, zeolite and calcium oxide in assisted remediation of acidic soil contaminated with Cr(III) and Cr(VI). Environ. Sci. Pollut. Res. Int. 2019, 26, 21351–21362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagiel, A.; Szulc, W. Effect of liming on cadmium immobilisation in the soil and content in spring wheat (Triticum aestivum L.). Soil Sci. Ann. 2020, 71, 93–96. [Google Scholar] [CrossRef]
- Tlustoš, P.; Száková, J.; Kořínek, K.; Pavlíková, D.; Hanč, A.; Balík, J. The effect of liming on cadmium, lead, and zinc uptake reduction by spring wheat grown in contaminated soil. Plant Soil Environ. 2006, 52, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Bolan, N.S.; Adriano, D.C.; Mani, P.A.; Duraisamy, A. Immobilization and phytoavailability of cadmium in variable charge soils. II. Effect of lime addition. Plant Soil 2003, 251, 187–198. [Google Scholar] [CrossRef]
- Ruttens, A.; Adriaensen, K.; Meers, E.; de Vocht, A.; Geebelen, W.; Carleer, R.; Mench, M.; Vangronsveld, J. Long-term sustainability of metal immobilization by soil amendments: Cyclonic ashes versus lime addition. Environ. Pollut. 2010, 158, 1428–1434. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Wyszkowski, M. Role of compost, bentonite and lime in recovering the biochemical equilibrium of diesel oil contaminated soil. Plant Soil Environ. 2006, 52, 505–514. [Google Scholar] [CrossRef] [Green Version]
Element | Soil | Compost | Bentonite | Calcium Oxide |
---|---|---|---|---|
Cd | 0.224 | 0.058 | 0.298 | 3.487 |
Pb | 15.63 | 1.86 | 9.78 | 2.92 |
Cr | 13.42 | 1.24 | 2.82 | 3.36 |
Ni | 14.78 | 0.49 | 2.44 | 3.54 |
Zn | 29.16 | 32.86 | 14.44 | 4.36 |
Cu | 2.69 | 39.56 | 12.92 | 2.28 |
Mn | 253.6 | 54.4 | 147.5 | 158.3 |
Fe | 8256 | 229 | 4236 | 424 |
Co | 3.44 | 0.49 | 0.30 | 1.73 |
Material | Petrol Dose (cm3 kg−1 d.m. of Soil) | Average | |||
---|---|---|---|---|---|
0 | 2.5 | 5 | 10 | ||
Without amendments | 14.54 (±0.79) ab | 12.07 (±0.63) cde | 10.79 (±0.46) d–f | 8.16 (±0.26) h | 11.39 A |
Compost | 14.61 (±0.31) ab | 12.24 (±0.74) cd | 10.73 (±0.54) d–g | 8.90 (±0.91) gh | 11.62 AB |
Bentonite | 14.60 (±0.47) ab | 11.47 (±0.77) c–f | 11.20 (±0.50) c–f | 10.21 (±0.75) e–g | 12.12 AB |
CaO | 15.85 (±0.67) a | 13.00 (±0.44) bc | 11.98 (±0.76) c–e | 10.05 (±0.36) fg | 12.72 B |
Material | Petrol Dose (cm3 kg−1 d.m. of Soil) | Average | |||
---|---|---|---|---|---|
0 | 2.5 | 5 | 10 | ||
Cadmium (Cd) | |||||
Without amendments | 0.093 (±0.001) a | 0.094 (±0.001) ab | 0.095 (±0.001) ab | 0.096 (±0.003) a–c | 0.095A |
Compost | 0.095 (±0.001) ab | 0.096 (±0.000) a–c | 0.097 (±0.001) a–c | 0.097 (±0.001) a–c | 0.096A |
Bentonite | 0.098 (±0.001) a–c | 0.098 (±0.002) a–c | 0.101 (±0.004) a–c | 0.101 (±0.002) bc | 0.100B |
CaO | 0.099 (±0.002) a–c | 0.102 (±0.001) bc | 0.100 (±0.001) a–c | 0.103 (±0.001) c | 0.101B |
Lead (Pb) | |||||
Without amendments | 0.450 (±0.014) a–c | 0.460 (±0.016) a–c | 0.510 (±0.014) b–d | 0.620 (±0.017) d | 0.510A |
Compost | 0.450 (±0.014) a–c | 0.580 (±0.008) cd | 0.600 (±0.028) d | 0.525 (±0.017) b–d | 0.539A |
Bentonite | 0.520 (±0.008) b–d | 0.531 (±0.022) b–d | 0.500 (±0.009) a–d | 0.443 (±0.034) ab | 0.498A |
CaO | 0.377 (±0.002) a | 0.378 (±0.023) a | 0.452 (±0.016) a–c | 0.503 (±0.022) a–d | 0.427B |
Chromium (Cr) | |||||
Without amendments | 1.200 (±0.094) a | 2.833 (±0.047) ab | 3.433 (±0.041) b | 3.800 (±0.034) bc | 2.816A |
Compost | 3.000 (±0.074) ab | 4.433 (±0.037) b–d | 4.233 (±0.052) b–d | 5.399 (±0.084) c–e | 4.266B |
Bentonite | 5.299 (±0.047) c–e | 5.966 (±0.041) d–f | 7.033 (±0.036) e–g | 7.599 (±0.084) f–h | 6.474C |
CaO | 6.466 (±0.028) ef | 7.333 (±0.043) f–h | 8.399 (±0.057) gh | 9.066 (±0.028) h | 7.816D |
Nickel (Ni) | |||||
Without amendments | 1.178 (±0.114) ab | 1.517 (±0.124) a–d | 1.680 (±0.097) a–e | 1.913 (±0.195) b–f | 1.572A |
Compost | 1.027 (±0.067) a | 1.365 (±0.082) a–c | 1.726 (±0.079) a–f | 1.82 (±0.099) b–f | 1.484A |
Bentonite | 1.703 (±0.089) a–f | 2.450 (±0.099) f | 2.275 (±0.026) ef | 1.785 (±0.115) b–f | 2.053B |
CaO | 1.540 (±0.033) a–e | 2.158 (±0.082) d–f | 2.030 (±0.084) c–f | 1.890 (±0.114) b–f | 1.904B |
Zinc (Zn) | |||||
Without amendments | 13.33 (±0.03) ab | 13.43 (±0.11) ab | 14.62 (±0.24) ab | 14.69 (±0.15) ab | 14.02A |
Compost | 13.23 (±0.43) ab | 15.08 (±0.35) ab | 16.04 (±0.28) ab | 14.10 (±0.15) ab | 14.61AB |
Bentonite | 16.78 (±0.63) ab | 18.90 (±0.37) b | 16.88 (±0.27) ab | 14.96 (±0.16) ab | 16.88B |
CaO | 11.35 (±0.29) a | 14.16 (±0.09) ab | 14.39 (±0.03) ab | 11.37 (±0.26) a | 12.82A |
Copper (Cu) | |||||
Without amendments | 1.000 (±0.084) a | 1.333 (±0.093) ab | 0.750 (±0.058) a | 0.667 (±0.036) a | 0.937A |
Compost | 1.667 (±0.011) a–c | 2.083 (±0.098) a–c | 3.133 (±0.024) b–d | 3.750 (±0.082) cd | 2.658B |
Bentonite | 4.833 (±0.084) d | 7.916 (±0.123) e | 10.499 (±0.287) f | 10.832 (±0.236) fg | 8.520C |
CaO | 6.999 (±0.087) e | 12.332 (±0.122) fg | 12.832 (±0.171) g | 15.248 (±0.225) h | 11.853D |
Material | Petrol Dose (cm3 kg−1 d.m. of Soil) | Average | |||
---|---|---|---|---|---|
0 | 2.5 | 5 | 10 | ||
Manganese (Mn) | |||||
Without amendments | 29.05 (±1.15) bc | 30.45 (±1.24) b–d | 38.96 (±0.99) de | 85.74 (±2.27) f | 46.05A |
Compost | 27.41 (±0.49) a–c | 28.58 (±0.16) a–c | 30.45 (±0.82) b–d | 41.76 (±0.24) e | 32.05B |
Bentonite | 29.63 (±0.24) bc | 34.53 (±0.24) c–e | 30.56 (±0.24) b–d | 30.20 (±1.16) b–d | 31.23B |
CaO | 19.83 (±1.31) a | 25.20 (±0.75) ab | 27.18 (±0.49) abc | 27.41 (±0.82) a–c | 24.91C |
Iron (Fe) | |||||
Without amendments | 31.40 (±0.62) ab | 39.26 (±1.17) a–e | 40.09 (±1.78) a–e | 44.16 (±1.87) c–f | 38.73A |
Compost | 29.61 (±1.31) a | 35.19 (±1.33) a–c | 37.01 (±1.79) a–c | 34.87 (±1.25) a–c | 34.17C |
Bentonite | 42.89 (±1.72) b–f | 52.13 (±1.23) f | 48.71 (±1.42) d–f | 38.43 (±0.56) a–d | 45.54B |
CaO | 33.16 (±1.65) a–c | 50.23 (±1.27) ef | 54.18 (±1.80) f | 33.44 (±1.13) a–c | 42.75AB |
Cobalt (Co) | |||||
Without amendments | 0.320 (±0.014) a | 0.352 (±0.011) ab | 0.412 (±0.004) a–c | 0.457 (±0.011) a–c | 0.386A |
Compost | 0.415 (±0.014) a–c | 0.432 (±0.018) a–c | 0.437 (±0.025) a–c | 0.560 (±0.007) c | 0.461B |
Bentonite | 0.417 (±0.018) a–c | 0.470 (±0.014) a–c | 0.497 (±0.004) bc | 0.580 (±0.017) c | 0.491B |
CaO | 0.475 (±0.009) a–c | 0.487 (±0.013) a–c | 0.507 (±0.012) bc | 0.540 (±0.017) c | 0.502B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyszkowski, M.; Kordala, N. Role of Different Material Amendments in Shaping the Content of Heavy Metals in Maize (Zea mays L.) on Soil Polluted with Petrol. Materials 2022, 15, 2623. https://doi.org/10.3390/ma15072623
Wyszkowski M, Kordala N. Role of Different Material Amendments in Shaping the Content of Heavy Metals in Maize (Zea mays L.) on Soil Polluted with Petrol. Materials. 2022; 15(7):2623. https://doi.org/10.3390/ma15072623
Chicago/Turabian StyleWyszkowski, Mirosław, and Natalia Kordala. 2022. "Role of Different Material Amendments in Shaping the Content of Heavy Metals in Maize (Zea mays L.) on Soil Polluted with Petrol" Materials 15, no. 7: 2623. https://doi.org/10.3390/ma15072623
APA StyleWyszkowski, M., & Kordala, N. (2022). Role of Different Material Amendments in Shaping the Content of Heavy Metals in Maize (Zea mays L.) on Soil Polluted with Petrol. Materials, 15(7), 2623. https://doi.org/10.3390/ma15072623