Reducing Friction in Orthodontic Brackets: A Matter of Material or Type of Ligation Selection? In-Vitro Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Testing Protocol
3. Results
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mazzeo, F.; Marchese, E.; Assumma, V.; Sepe, J.; Perillo, L. A new device (FAQ.FIX®) for orthodontic bracket placement in straight wire technique. Prog. Orthod. 2013, 14, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Natt, A.S.; Sekhon, A.K.; Munjal, S.; Duggal, R.; Holla, A.; Gupta, P.; Gandhi, P.; Sarin, S. A comparative evaluation of static frictional resistance using various methods of ligation at different time intervals: An in vitro study. Int. J. Dent. 2015, 2015, 407361. [Google Scholar] [CrossRef] [PubMed]
- Cacciafesta, V.; Sfondrini, M.F.; Scribante, A.; Klersy, C.; Auricchio, F. Evaluation of friction of conventional and metal-insert ceramic brackets in various bracket-archwire combinations. Am. J. Orthod. Dentofacial. Orthop. 2003, 124, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Arash, V.; Javanmard, S.; Eftekhari, Z.; Rahmati-Kamel, M.; Bahadoram, M. Evaluation of Static Friction of Polycrystalline Ceramic Brackets after Conditioning with Different Powers of Er: YAG Laser. Int. J. Dent. 2015, 749616. [Google Scholar] [CrossRef] [Green Version]
- Alsubie, M.; Talic, N. Variables affecting the frictional resistance to sliding in orthodontic brackets. Dent. Oral Craniofacial. Res. 2016, 2, 271–275. [Google Scholar] [CrossRef] [Green Version]
- Proffit, W.R.; Fields, H.W.; Sarver, D.M.; Ackerman, J.L. Contemporary Orthodontics, 5th ed.; Elsevier Mosby: St. Louis, MO, USA, 2013. [Google Scholar]
- Thorstenson, G.A.; Kusy, R.P. Resistance to sliding of self-ligating brackets versus conventional stainless steel twin brackets with second-order angulation in the dry and wet (saliva) states. Am. J. Orthod. Dentofacial. Orthop. 2001, 120, 361–370. [Google Scholar] [CrossRef]
- Talic, N.F. Adverse effects of orthodontic treatment: A clinical perspective. Saudi. Dent. J. 2011, 23, 55–59. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Jacox, L.A.; Little, S.H.; Ko, C.C. Orthodontic tooth movement: The biology and clinical implications. Kaohsiung J. Med. Sci. 2018, 34, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, H.A.; Bourauel, C.; Drescher, D. Der Einfluss der Ligatur auf die Friktion zwischen Bracket und Bogen [The effect of the ligature on the friction between bracket and arch]. Fortschr. Kieferorthop. 1990, 51, 106–116. [Google Scholar] [CrossRef]
- Kanagasabapathy, B.; Varadharaja, M.M.; Saravanan, R.; Kumar, V.V.; Mahalakshmi, R.; Ninan, R.L.; Vigneswari, A.S.; Dwaragesh, S. Frictional Forces Produced by Three Different Ligation Methods in Two Different Types of Brackets in 0.016 Nickel-Titanium Wire: An in vitro Study. J. Pharm. Bioallied. Sci. 2021, 13, S1624–S1627. [Google Scholar]
- Nigel, H. Self-ligating brackets increase treatment efficiency. Am. J. Orthod. Dentofacial. Orthop. 2013, 143, 10–18. [Google Scholar] [CrossRef]
- Thomas, P.; Jnaneshwar, P.; Rajaram, K.; Kishore, S.; Venkatesan, K. Comparative evaluation of frictional forces between ceramic brackets, metal insert ceramic brackets, and conventional metal brackets with three different arch wires: An in vitro study. Int. J. Orthod. Rehabil. 2021, 12, 1. [Google Scholar]
- Koticha, P.B.; Pradhan, D.; Katge, F.; Krishna, V.; Bhanushali, P.; Patil, D. COVID-19 in children: Its impact on oral health and paediatric dentistry. Int. J. Sci. Healthc. Res. 2020, 5, 377–389. Available online: https:/ijshr.com/IJSHR_Vol.5_Issue.3_July2020/IJSHR_Abstract.0056.html (accessed on 4 March 2021).
- Pituru, S.M.; Imre, M.; Totan, A.; Pantea, M.; Tancu, A.M.C.; Amza, O.; Bencze, A.; Ionescu, E. Study on the ethical and safety aspects among romanian dental healthcare professionals during COVID-19 pandemic. Rom. J. Leg. Med. 2020, 28, 322–330. [Google Scholar] [CrossRef]
- Dragomirescu, A.O.; Teodorescu, E.; Țărmure, V.; Baluță, A.; Păcurar, M.; Nenovici, D.; Chibelean, M.; Ionescu, E. Variation of Static Frictional Forces in the Fixed Orthodontic System. Rev. Chim. 2019, 70, 3954–3956. [Google Scholar] [CrossRef]
- Dragomirescu, A.O.; Rizescu, C.I.; Mihai, A.M.; Bencze, A.; Teodorescu, E.; Păcurar, M.; Ionescu, E. In vitro evaluation of static frictional forces at the bracket-archwire interface. Rev. Chim. 2019, 70, 1192–1196. [Google Scholar] [CrossRef]
- Rizescu, C.I.; Ionascu, G.; Rizescu, D.; Trufasu, A.; Bogatu, L.; Manea, E. New Experimental Setup for Studying the Influence of Surface Material and Topography on Tribological Behavior. In Proceedings of the 2011 IEEE International Conference on Mechatronics, Istanbul, Turkey, 13–15 April 2011; pp. 609–614. [Google Scholar] [CrossRef]
- Paris, A.S.; Dragomirescu, C.; Târcolea, C. Statistical and software applications in the Materials selection. Fiability Durab. 2014, 1, 93–99. [Google Scholar]
- Volceanov, E.; Volceanov, A.; Stoleriu, Ş. Assessment on mechanical properties controlling of alumina ceramics for harsh service conditions. J. Eur. Ceram. 2007, 27, 759–762. [Google Scholar] [CrossRef]
- Tselepis, M.; Brockhurst, P.; West, V.S. The dynamic frictional resistance between orthodontic brackets and archwires. Am. J. Orthod. Dentofac. Orthop. 1994, 106, 131–138. [Google Scholar] [CrossRef]
- Loftus, B.P.; Artun, J.; Nicholls, J.I.; Alonzo, T.A.; Stoner, J.A. Evaluation of friction during sliding tooth movement in various bracket-arch wire combinations. Am. J. Orthod. Dentofac. Orthop. 1999, 116, 336–345. [Google Scholar] [CrossRef]
- Sukh, R.; Singh, G.K.; Tandon, P.; Singh, G.P.; Singh, A. A comparative study of frictional resistance during simulated canine retraction on typodont model. J. Orthod. Sci. 2013, 2, 61–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burrow, S.J. Friction and resistance to sliding in orthodontics: A critical review. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Pattan, S.K.; Peddu, R.; Bandaru, S.K.; Lanka, D.; Mallavarapu, K.; Pathan, A.B. Efficacy of Super Slick elastomeric modules in reducing friction during sliding: A comparative in vitro study. J. Contemp. Dent. Pract. 2014, 15, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Ryan, R.; Walker, G.; Freeman, K.; Cisneros, G.J. The effects of ion implantation on rate of tooth movement: An in vitro model. Am. J. Orthod. Dentofac. Orthop. 1997, 112, 64–68. [Google Scholar] [CrossRef]
- Arango, S.; Peláez-Vargas, A.; García, C. Coating and Surface Treatments on Orthodontic Metallic Materials. Coatings 2013, 3, 1–15. [Google Scholar] [CrossRef]
- Bohinc, K.; Dražić, G.; Abram, A.; Jevšnik, M.; Jeršek, B.; Nipič, D.; Kurinčič, M.; Raspor, P. Metal surface characteristics dictate bacterial adhesion capacity. Int. J. Adhes. Adhes. 2016, 68, 39–46. [Google Scholar] [CrossRef]
- Tageldin, H.; de Llano-Pérula, M.C.; Thevissen, P.; Celis, J.P.; Willems, G. Quantifying resistance to sliding in orthodontics: A systematic review. Br. J. Med. Med. Res. 2016, 17, 1–30. [Google Scholar] [CrossRef]
- Sarul, M.; Mikulewicz, M.; Kozakiewicz, M.; Jurczyszyn, K. Surface Evaluation of Orthodontic Brackets Using Texture and Fractal Dimension Analysis. Materials 2022, 15, 2071. [Google Scholar] [CrossRef]
- Blau, P.J. Friction Science and Technology: From Concepts to Applications; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Voinea, R.; Deciu, E.; Dragomirescu, C. Technische Mechanik; Editura ALMA: Craiova, Romania, 2009. [Google Scholar]
- Chang, C.J.; Lee, T.M.; Liu, J.K. Effect of bracket bevel design and oral environmental factors on frictional resistance. Angle Orthod. 2013, 83, 956–965. [Google Scholar] [CrossRef]
- Raji, S.H.; Shojaei, H.; Ghorani, P.S.; Rafiei, E. Bacterial colonization on coated and uncoated orthodontic wires: A prospective clinical trial. Dent. Res. J. 2014, 11, 680–683. [Google Scholar]
- Cha, J.Y.; Kim, K.S.; Hwang, C.J. Friction of conventional and silica-insert ceramic brackets in various bracket-wire combinations. Angle Orthod. 2007, 77, 100–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tecco, S.; Tete, S.; Festa, M.; Festa, F. An in vitro investigation on friction generated by ceramic brackets. World J. Orthod. 2010, 11, e133–e144. [Google Scholar] [PubMed]
- Williams, C.L.; Khalaf, K. Frictional Resistance of Three Types of Ceramic Brackets. J. Oral Maxillofac. Res. 2013, 4, e37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arici, N.; Akdeniz, B.S.; Arici, S. Comparison of the frictional characteristics of aesthetic orthodontic brackets measured using a modified in vitro technique. Korean J. Orthod. 2015, 45, 29–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pliska, B.T.; Fuchs, R.W.; Beyer, J.P.; Larson, B.E. Effect of applied moment on resistance to sliding among esthetic self-ligating brackets. Angle Orthod. 2014, 84, 134–139. [Google Scholar] [CrossRef]
- Eberting, J.J.; Straja, S.R.; Tuncay, O.C. Treatment time, outcome, and patient satisfaction comparisons of Damon and conventional brackets. Clin. Orthod. Res. 2001, 4, 228–234. [Google Scholar] [CrossRef]
- Miles, P.G. Self-ligating brackets in orthodontics: Do they deliver what they claim? Aust. Dent. J. 2009, 54, 9–11. [Google Scholar] [CrossRef]
- Buyukcavus, M.H. Non-extraction Orthodontic Treatment with Damon System: Two Case Reports. BSJ Health Sci. 2021, 4, 44–47. [Google Scholar] [CrossRef]
- Birnie, D. The Damon Passive Self-Ligating Appliance System. Semin. Orthod. 2008, 14, 19–35. [Google Scholar] [CrossRef]
- Damon, D.H. The rationale, evolution and clinical application of the self-ligating bracket. Clin. Orthod. Res. 1998, 1, 52–61. [Google Scholar] [CrossRef]
- Damon, D. Damon System: The Workbook; Ormco: Orange County, CA, USA, 2004. [Google Scholar]
- Ehsani, S.; Mandich, M.A.; El-Bialy, T.H.; Flores-Mir, C. Frictional resistance in self-ligating orthodontic brackets and conventionally ligated brackets. Angle Orthod. 2009, 79, 592–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, S.; Sherriff, M.; Birnie, D. A comparative in vitro study of the frictional characteristics of two types of self-ligating brackets and two types of preadjusted edgewise brackets tied with elastomeric ligatures. Eur. J. Orthod. 1998, 20, 589–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapur, R.; Sinha, P.K.; Nanda, R.S. Frictional resistance of the Damon SL bracket. J. Clin. Orthod. 1998, 32, 485–489. [Google Scholar] [PubMed]
- Pizzoni, L.; Ravnholt, G.; Melsen, B. Frictional forces related to selfligating brackets. Eur. J. Orthod. 1998, 20, 283–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khambay, B.; Millett, D.; McHugh, S. Evaluation of methods of archwire ligation on frictional resistance. Eur. J. Orthod. 2004, 26, 327–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, B.; Bister, D.; Baumgaertel, S. Self-Ligating Brackets in Orthodontics, 1st ed.; Thieme: Stuttgart, Germany, 2012. [Google Scholar]
- Pandis, N.; Miles, P.G. Treatment Efficiency with Self-Ligating Brackets: The Clinical Evidence. Semin. Orthod. 2010, 16, 258–265. [Google Scholar] [CrossRef]
- Johansson, K.; Lundström, F. Orthodontic treatment efficiency with self-ligating and conventional edgewise twin brackets: A prospective randomized clinical trial. Angle Orthod. 2012, 82, 929–934. [Google Scholar] [CrossRef]
- Fleming, P.S.; O’Brien, K. Do Self-ligating brackets increase the efficiency of orthodontic treatment? J. Dentofac. Anom. Orthod. 2013, 16, 402. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Singh, S.; Hamsa, P.R.R.; Ahmed, S.; Prasanthma; Bhatnagar, A.; Sidhu, M.; Shetty, P. Evaluation of friction in orthodontics using various brackets and archwire combinations-an in vitro study. J. Clin. Diagn. Res. 2014, 8, ZC33–ZC36. [Google Scholar] [CrossRef]
- Henao, S.P.; Kusy, R.P. Evaluation of the frictional resistance of conventional and self-ligating bracket designs using standardized archwires and dental typodonts. Angle Orthod. 2004, 74, 202–211. [Google Scholar] [CrossRef]
- Tecco, S.; Di Iorio, D.; Cordasco, G.; Verrocchi, I.; Festa, F. An in vitro investigation of the influence of self-ligating brackets, low friction ligatures, and archwire on frictional resistance. Eur. J. Orthod. 2007, 29, 390–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Q.; Ul Haq, A.A.; Tian, L.; Chen, X.; Huang, K.; Zhou, Y. Canine retraction and anchorage loss self-ligating versus conventional brackets: A systematic review and meta-analysis. BMC Oral Health 2015, 15, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Brackets | |||
---|---|---|---|
Conventional | Self-Ligated | ||
stainless steel (Mini Sprint, Forestadent, Pforzheim, Germany) | polycrystalline alumina (Discovery Pearl, Dentaurum, Ispringen, Germany) | stainless steel (Damon Q, Ormco, Brea, CA, USA) | polycrystalline alumina (Damon Clear, Ormco, Brea, CA, USA) |
0.016” NiTi Archwire | Stainless Steel Brackets | Polycrystalline Alumina Brackets | p |
---|---|---|---|
Conventional brackets | 1.65 ± 0.258 N | 3.087 ± 1.054 N | <0.001 *,1 |
Self-ligating brackets | 0.35 ± 0.115 N | 0.536 ± 0.126 N | <0.05 *,1 |
p | <0.001 *,1 | <0.001 *,1 |
0.019 × 0.025” SS Archwire | Stainless Steel Brackets | Polycrystalline Alumina Brackets | p |
---|---|---|---|
Conventional brackets | 3.85 ± 0.288 N | 8.741 ± 1.299 N | <0.001 *,2 |
Self-ligating brackets | 3.883 ± 0.1 N | 5.933 ± 0.622 N | <0.001 *,1 |
p | 0.785 1 | <0.001 *,1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragomirescu, A.-O.; Bencze, M.-A.; Vasilache, A.; Teodorescu, E.; Albu, C.-C.; Popoviciu, N.O.; Ionescu, E. Reducing Friction in Orthodontic Brackets: A Matter of Material or Type of Ligation Selection? In-Vitro Comparative Study. Materials 2022, 15, 2640. https://doi.org/10.3390/ma15072640
Dragomirescu A-O, Bencze M-A, Vasilache A, Teodorescu E, Albu C-C, Popoviciu NO, Ionescu E. Reducing Friction in Orthodontic Brackets: A Matter of Material or Type of Ligation Selection? In-Vitro Comparative Study. Materials. 2022; 15(7):2640. https://doi.org/10.3390/ma15072640
Chicago/Turabian StyleDragomirescu, Anca-Oana, Maria-Angelica Bencze, Adriana Vasilache, Elina Teodorescu, Cristina-Crenguța Albu, Nicoleta Olivia Popoviciu, and Ecaterina Ionescu. 2022. "Reducing Friction in Orthodontic Brackets: A Matter of Material or Type of Ligation Selection? In-Vitro Comparative Study" Materials 15, no. 7: 2640. https://doi.org/10.3390/ma15072640
APA StyleDragomirescu, A.-O., Bencze, M.-A., Vasilache, A., Teodorescu, E., Albu, C.-C., Popoviciu, N. O., & Ionescu, E. (2022). Reducing Friction in Orthodontic Brackets: A Matter of Material or Type of Ligation Selection? In-Vitro Comparative Study. Materials, 15(7), 2640. https://doi.org/10.3390/ma15072640