Effects of Harvest Maturity on the Chemical and Energetic Properties of Corn Stover Biomass Combustion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Material
2.2. Determination of Moisture, Ash, and Volatile Matter Contents
2.3. Elemental Analysis
2.4. Combustion Heat and Calorific Value
2.5. Statistical Analysis
3. Results and Discussion
3.1. Moisture Content of Cob Cores
3.2. Ash and Volatile Matter Content
3.3. Elemental Analysis
3.4. Combustion Heat and Calorific Value
4. Conclusions
- The FAO earliness of a maize variety had a significant impact on the elemental composition, ash content and calorific value in the cob cores.
- The FAO earliness standard is an indicator for determining the calorific value of corn cob cores. Correlation between maize cultivar earliness FAO with core moisture content was found.
- Corn cob cores moisture depends on variety earliness but is not the highest for varieties with the highest FAO. This is important information for energy producers as well as for seasoning processes in order to reduce moisture content of corn cob cores.
- The obtained high calorific values of corn cob cores indicate their suitability as a fuel in biomass combustion processes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rajaeifar, M.A.; Ghanavati, H.; Dashti, B.B.; Heijungs, R.; Aghbashlo, M.; Tabatabaei, M. Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review. Renew. Sustain. Energy Rev. 2017, 79, 414–439. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Hosseinpour, S.; Tabatabaei, M.; Dadak, A. Fuzzy modeling and optimization of the synthesis of biodiesel from waste cooking oil (WCO) by a low power, high frequency piezo-ultrasonic reactor. Energy 2017, 132, 65–78. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Tabatabaei, M.; Hosseini, S.S.; Dashti, B.B.; Mojarab Soufiyan, M. Performance assessment of a wind power plant using standard exergy and extended exergy accounting (EEA) approaches. J. Clean. Prod. 2018, 171, 127–136. [Google Scholar] [CrossRef]
- Hosseinpour, S.; Aghbashlo, M.; Tabatabaei, M. Biomass higher heating value (HHV) modeling on the basis of proximate analysis using iterative network-based fuzzy partial least squares coupled with principle component analysis (PCA-INFPLS). Fuel 2018, 222, 1–10. [Google Scholar] [CrossRef]
- Khalife, E.; Tabatabaei, M.; Demirbas, A.; Aghbashlo, M. Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Prog. Energy Combust. Sci. 2017, 59, 32–78. [Google Scholar] [CrossRef]
- Hajjari, M.; Tabatabaei, M.; Aghbashlo, M.; Ghanavati, H. A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization. Renew. Sustain. Energy Rev. 2017, 72, 445–464. [Google Scholar] [CrossRef]
- Wojcieszak, D.; Przybył, J.; Myczko, R.; Myczko, A. Technological and energetic evaluation of maize stover silage for methane production on technical scale. Energy 2018, 151, 903–912. [Google Scholar] [CrossRef]
- Menardo, S.; Airoldi, G.; Cacciatore, V.; Balsari, P. Potential biogas and methane yield of maize stover fractions and evaluation of some possible stover harvest chains. Biosyst. Eng. 2015, 129, 352–359. [Google Scholar] [CrossRef]
- Guo, G.; Shen, C.; Liu, Q.; Zhang, S.L.; Shao, T.; Wang, C.; Wang, Y.X.; Xu, Q.F.; Huo, W.J. The effect of lactic acid bacteria inoculums on in vitro rumen fermentation, methane production, ruminal cellulolytic bacteria populations and cellulase activities of corn stover silage. J. Integr. Agric. 2020, 19, 838–847. [Google Scholar] [CrossRef]
- Huang, W.B.; Wachemo, A.C.; Yuan, H.R.; Li, X.J. Modification of corn stover for improving biodegradability and anaerobic digestion performance by Ceriporiopsis subvermispora. Bioresour. Technol. 2019, 283, 76–85. [Google Scholar] [CrossRef]
- Czajkowski, Ł.; Wojcieszak, D.; Olek, W.; Przybył, J. Thermal properties of fractions of corn stover. Constr. Build. Mater. 2019, 210, 709–712. [Google Scholar] [CrossRef]
- Anshar, M.; Ani, F.N.; Kader, A.S.; Makhrani. Electrical energy potential of corn cob as alternative energy source for power plant in Indonesia. Adv. Sci. Lett. 2017, 23, 4184–4187. [Google Scholar] [CrossRef]
- Mazurkiewicz, J.; Marczuk, A.; Pochwatka, P.; Kujawa, S. Maize straw as a valuable energetic material for biogas plant feeding. Materials 2019, 12, 3848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinners, K.J.; Binversie, B.N.; Muck, R.E.; Weimer, P.J. Comparison of wet and dry corn stover harvest and storage. Biomass Bioenergy 2007, 31, 211–221. [Google Scholar] [CrossRef]
- Bovo, M.; Giani, N.; Barbaresi, A.; Mazzocchetti, L.; Barbaresi, L.; Giorgini, L.; Torreggiani, D.; Tassinari, P. Contribution to thermal and acoustic characterization of corn cob for bio-based building insulation applications. Energy Build. 2022, 262, 111994. [Google Scholar] [CrossRef]
- Cieślik, M.; Dach, J.; Lewicki, A.; Smurzyńska, A.; Janczak, D.; Pawlicka-Kaczorowska, J.; Boniecki, P.; Cyplik, P.; Czekała, W.; Jóźwiakowski, K. Methane fermentation of the maize straw silage under meso- and thermophilic conditions. Energy 2016, 115, 1495–1502. [Google Scholar] [CrossRef]
- Hassan, M.; Ding, W.; Umar, M.; Hei, K.; Bi, J.; Shi, Z. Methane enhancement and asynchronism minimization through co-digestion of goose manure and NaOH solubilized corn stover with waste activated sludge. Energy 2017, 118, 1256–1263. [Google Scholar] [CrossRef]
- Kupryaniuk, K.; Oniszczuk, T.; Combrzyński, M.; Czekała, W.; Matwijczuk, A. The influence of corn straw extrusion pretreatment parameters on methane fermentation performance. Materials 2020, 13, 3003. [Google Scholar] [CrossRef]
- Morissette, R.; Savoie, P.; Villeneuve, J. Corn Stover and Wheat Straw Combustion in a 176-kw Boiler Adapted for Round Bales. Energies 2013, 6, 5760–5774. [Google Scholar] [CrossRef]
- Morissette, R.; Savoie, P.; Villeneuve, J. Combustion of corn stover bales in a small 146-kW boiler. Energies 2011, 4, 1102–1111. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.; Yao, Z.; Zhao, L.; Cong, H.; Liu, G.; Zhao, Y. Design and emission characteristics of straw bales fuel combustion-boiler. Nongye Gongcheng Xuebao Trans. Chin. Soc. Agric. Eng. 2019, 35, 148–153. [Google Scholar] [CrossRef]
- Maj, G.; Szyszlak-Bargłowicz, J.; Zajac, G.; Słowik, T.; Krzaczek, P.; Piekarski, W. Energy and emission characteristics of biowaste from the corn grain drying process. Energies 2019, 12, 4383. [Google Scholar] [CrossRef] [Green Version]
- Zajac, G.; Maj, G.; Szyszlak-Bargłowicz, J.; Słowik, T.; Krzaczek, P.; Gołebiowski, W.; Debowski, M. Evaluation of the properties and usefulness of ashes from the corn grain drying process biomass. Energies 2020, 13, 1290. [Google Scholar] [CrossRef] [Green Version]
- Johnston, P.A.; Zhou, H.; Aui, A.; Wright, M.M.; Wen, Z.; Brown, R.C. A lignin-first strategy to recover hydroxycinnamic acids and improve cellulosic ethanol production from corn stover. Biomass Bioenergy 2020, 138, 105579. [Google Scholar] [CrossRef]
- Yang, Y.; Ni, J.Q.; Zhou, S.; Xie, G.H. Comparison of energy performance and environmental impacts of three corn stover-based bioenergy pathways. J. Clean. Prod. 2020, 272, 122631. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, H.; Pang, S.; Su, C.; Lv, M.; An, N.; Wang, K.; Cai, D.; Qin, P. Importance of redefinition of corn stover harvest time to enhancing non-food bio-ethanol production. Renew. Energy 2020, 144, 1444–1450. [Google Scholar] [CrossRef]
- Zhao, Y.; Damgaard, A.; Liu, S.; Chang, H.; Christensen, T.H. Bioethanol from corn stover—Integrated environmental impacts of alternative biotechnologies. Resour. Conserv. Recycl. 2020, 155, 104652. [Google Scholar] [CrossRef]
- Djatkov, D.; Martinov, M.; Kaltschmitt, M. Influencing parameters on mechanical–physical properties of pellet fuel made from corn harvest residues. Biomass Bioenergy 2018, 119, 418–428. [Google Scholar] [CrossRef]
- Xu, H.; Li, Y.; Hua, D.; Zhao, Y.; Mu, H.; Chen, H.; Chen, G. Enhancing the anaerobic digestion of corn stover by chemical pretreatment with the black liquor from the paper industry. Bioresour. Technol. 2020, 306, 123090. [Google Scholar] [CrossRef]
- Sokhansanj, S.; Mani, S.; Tagore, S.; Turhollow, A.F. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant—Part 1: Cost of feedstock supply logistics. Biomass Bioenergy 2010, 34, 75–81. [Google Scholar] [CrossRef]
- Li, Z.; Zhai, H.; Zhang, Y.; Yu, L. Cell morphology and chemical characteristics of corn stover fractions. Ind. Crop. Prod. 2012, 37, 130–136. [Google Scholar] [CrossRef]
- Șerbănoiu, A.A.; Grădinaru, C.M.; Muntean, R.; Cimpoeșu, N.; Șerbănoiu, B.V. Corn Cob Ash versus Sunflower Stalk Ash, Two Sustainable Raw Materials in an Analysis of Their Effects on the Concrete Properties. Materials 2022, 15, 868. [Google Scholar] [CrossRef] [PubMed]
- Shakouri, M.; Exstrom, C.L.; Ramanathan, S.; Suraneni, P. Hydration, strength, and durability of cementitious materials incorporating untreated corn cob ash. Constr. Build. Mater. 2020, 243, 118171. [Google Scholar] [CrossRef]
- Thomas, B.S.; Yang, J.; Mo, K.H.; Abdalla, J.A.; Hawileh, R.A.; Ariyachandra, E. Biomass ashes from agricultural wastes as supplementary cementitious materials or aggregate replacement in cement/geopolymer concrete: A comprehensive review. J. Build. Eng. 2021, 40, 102332. [Google Scholar] [CrossRef]
- Wojcieszak, D.; Przybył, J.; Ratajczak, I.; Goliński, P.; Janczak, D.; Waśkiewicz, A.; Szentner, K.; Woźniak, M. Chemical composition of maize stover fraction versus methane yield and energy value in fermentation process. Energy 2020, 198, 117258. [Google Scholar] [CrossRef]
- Evans, J.D. Straightforward Statistics for the Behavioral Sciences; Thomson Brooks/Cole Publishing Co.: Pacific Grove, CA, USA, 1996. [Google Scholar]
- Galhano dos Santos, R.; Bordado, J.C.; Mateus, M.M. Estimation of HHV of lignocellulosic biomass towards hierarchical cluster analysis by Euclidean’s distance method. Fuel 2018, 221, 72–77. [Google Scholar] [CrossRef]
- Yin, C.Y. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 2011, 90, 1128–1132. [Google Scholar] [CrossRef] [Green Version]
- Demirbas, A. Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor. Exploit. 2002, 20, 105–111. [Google Scholar] [CrossRef]
- Lizotte, P.L.; Savoie, P.; De Champlain, A. Ash content and calorific energy of corn stover components in eastern Canada. Energies 2015, 8, 4827–4838. [Google Scholar] [CrossRef] [Green Version]
- Louis, A.C.F.; Venkatachalam, S. Energy efficient process for valorization of corn cob as a source for nanocrystalline cellulose and hemicellulose production. Int. J. Biol. Macromol. 2020, 163, 260–269. [Google Scholar] [CrossRef]
- Ahmad, M.; Subawi, H. New Van Krevelen diagram and its correlation with the heating value of biomass. Apex J. 2013, 2, 295–301. [Google Scholar]
- Takada, M.; Niu, R.; Minami, E.; Saka, S. Characterization of three tissue fractions in corn (Zea mays) cob. Biomass Bioenergy 2018, 115, 130–135. [Google Scholar] [CrossRef]
- Xiong, S.; Zhang, Y.; Zhuo, Y.; Lestander, T.; Geladi, P. Variations in fuel characteristics of corn (Zea mays) stovers: General spatial patterns and relationships to soil properties. Renew. Energy 2010, 35, 1185–1191. [Google Scholar] [CrossRef]
- Miao, M.; Kong, H.; Deng, B.; Chen, L.; Yang, H.; Lyu, J.; Zhang, M. Experimental study on N2O and NOx emission characteristics of five high-volatile fuels in bubbling bed combustion. Fuel Process. Technol. 2020, 208, 106517. [Google Scholar] [CrossRef]
- Wang, T.; Yang, Q.; Wang, Y.; Wang, J.; Zhang, Y.; Pan, W.P. Arsenic release and transformation in co-combustion of biomass and coal: Effect of mineral elements and volatile matter in biomass. Bioresour. Technol. 2020, 297, 122388. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, X.; Yao, S.; Qin, H.; Zhang, L.; Yao, X.; Yu, Z.; Lu, J. Feasibility study of gross calorific value, carbon content, volatile matter content and ash content of solid biomass fuel using laser-induced breakdown spectroscopy. Fuel 2019, 258, 116150. [Google Scholar] [CrossRef]
- Duboc, P.; Schill, N.; Menoud, L.; Van Gulik, W.; Von Stockar, U. Measurements of sulfur, phosphorus and other ions in microbial biomass: Influence on correct determination of elemental composition and degree of reduction. J. Biotechnol. 1995, 43, 148–158. [Google Scholar] [CrossRef]
- Kantorek, M.; Jesionek, K.; Polesek-Karczewska, S.; Ziółkowski, P.; Badur, J. Thermal utilization of meat and bone meals. Performance analysis in terms of drying process, pyrolysis and kinetics of volatiles combustion. Fuel 2019, 254, 115548. [Google Scholar] [CrossRef]
- Martillo Aseffe, J.A.; Martínez González, A.; Jaén, R.L.; Silva Lora, E.E. The corn cob gasification-based renewable energy recovery in the life cycle environmental performance of seed-corn supply chain: An Ecuadorian case study. Renew. Energy 2021, 163, 1523–1535. [Google Scholar] [CrossRef]
- Klaas, M.; Greenhalf, C.; Ouadi, M.; Jahangiri, H.; Hornung, A.; Briens, C.; Berruti, F. The effect of torrefaction pre-treatment on the pyrolysis of corn cobs. Results Eng. 2020, 7, 100165. [Google Scholar] [CrossRef]
- Sheng, C.; Azevedo, J.L.T. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy 2005, 28, 499–507. [Google Scholar] [CrossRef]
- Miranda, M.T.; Sepúlveda, F.J.; Arranz, J.I.; Montero, I.; Rojas, C.V. Analysis of pelletizing from corn cob waste. J. Environ. Manag. 2018, 228, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Channiwala, S.A.; Parikh, P.P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002, 81, 1051–1063. [Google Scholar] [CrossRef]
- Morey, R.V.; Hatfield, D.L.; Sears, R.; Haak, D.; Tiffany, D.G.; Kaliyan, N. Fuel properties of biomass feed streams at ethanol plants. Appl. Eng. Agric. 2009, 25, 57–64. [Google Scholar] [CrossRef] [Green Version]
Corn Variety | Average Grain Moisture (%) | Average Cob Cores Moisture (%) |
---|---|---|
FAO 220 | 26.9 ± 0.2 | 41.1 ± 0.1 |
230 | 26.3 ± 0.2 | 45.6 ± 0.4 |
FAO 240 | 26.9 ± 0.1 | 49.3 ± 0.2 |
FAO 250 | 26.5 ± 0.4 | 57.0 ± 0.3 |
FAO 260 | 27.2 ± 0.1 | 39.1 ± 0.1 |
FAO 280 | 34.2 ± 0.9 | 54.1 ± 0.3 |
n | 2 | 2 |
Variety | Grain Moisture | |
---|---|---|
Grain moisture | 0.63 | - |
Cobs moisture | 0.40 | 0.34 |
Corn Variety | Ash (%) | Volatile Parts (%) |
---|---|---|
FAO 220 | 1.31 c ± 0.31 | 93.8 ab ± 0.4 |
FAO 230 | 1.89 bc ± 0.42 | 91.3 b ± 1.5 |
FAO 240 | 2.12 abc ± 0.28 | 93.6 ab ± 0.8 |
FAO 250 | 1.04 d ± 0.46 | 92.1 ab ± 1.3 |
FAO 260 | 2.58 ab ± 0.14 | 94.1 a ± 0.3 |
FAO 280 | 2.67 a ± 0.26 | 94.5 a ± 1.3 |
n | 4 | 4 |
Corn Variety | C | H | N |
---|---|---|---|
FAO 220 | 44.08 a ± 0.52 | 6.00 a ± 0.29 | 0.56 d ± 0.02 |
FAO 230 | 43.47 ab ± 0.24 | 5.63 ab ± 0.17 | 0.64 c ± 0.02 |
FAO 240 | 42.59 c ± 0.05 | 5.65 ab ± 0.14 | 0.78 a ± 0.00 |
FAO 250 | 43.34 abc ± 0.09 | 5.65 abc ± 0.11 | 0.66 c ± 0.01 |
FAO 260 | 38.50 d ± 0.70 | 5.09 c ± 0.06 | 0.73 b ± 0.02 |
FAO 280 | 42.92 bc ± 0.11 | 5.64 b ± 0.12 | 0.80 a ± 0.03 |
n | 4 | 4 | 4 |
Corn Variety | Average HHV (MJ/kg) | Average LHV (MJ/kg) |
---|---|---|
FAO 220 | 10.38 c ± 0.01 | 8.10 b ± 0.07 |
FAO 230 | 9.60 bc ± 0.02 | 7.28 c ± 0.05 |
FAO 240 | 9.02 ab ± 0.04 | 6.60 d ± 0.06 |
FAO 250 | 7.62 abc ± 0.02 | 5.02 f ± 0.02 |
FAO 260 | 10.79 a ± 0.08 | 8.75 a ± 0.10 |
FAO 280 | 8.08 c ± 0.02 | 5.57 e ± 0.06 |
n | 4 | 4 |
Corn Varieties | C | H | N | Ash | VM | Grain Moisture after Harvest | HHV | |
---|---|---|---|---|---|---|---|---|
C | −0.48 | - | - | - | - | - | - | - |
H | −0.60 | 0.82 | - | - | - | - | - | - |
N | 0.75 | −0.33 | −0.42 | - | - | - | - | - |
Ash | 0.55 | −0.52 | −0.49 | 0.70 | - | - | - | - |
WM | 0.39 | −0.30 | −0.03 | 0.40 | 0.49 | - | - | - |
Moisture after harvest | 0.36 | 0.53 | 0.26 | 0.33 | −0.23 | −0.14 | - | - |
HHV | −0.36 | −0.54 | −0.27 | −0.32 | 0.23 | 0.14 | −1.00 | - |
LHV | −0.32 | −0.57 | −0.32 | −0.30 | 0.25 | 0.14 | −1.00 | 1.00 |
Corn Variety | Average HHV (MJ/kg) | Average LHV (MJ/kg) |
---|---|---|
FAO 220 | 17.63 b ± 0.02 | 16.19 c ± 0.07 |
FAO 230 | 17.65 ab ± 0.04 | 16.28 bc ± 0.07 |
FAO 240 | 17.79 a ± 0.08 | 16.45 ab ± 0.09 |
FAO 250 | 17.72 ab ± 0.04 | 16.36 abc ± 0.05 |
FAO 260 | 17.72 ab ± 0.12 | 16.53 a ± 0.15 |
FAO 280 | 17.58 b ± 0.04 | 16.21 c ± 0.08 |
n | 4 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojcieszak, D.; Przybył, J.; Czajkowski, Ł.; Majka, J.; Pawłowski, A. Effects of Harvest Maturity on the Chemical and Energetic Properties of Corn Stover Biomass Combustion. Materials 2022, 15, 2831. https://doi.org/10.3390/ma15082831
Wojcieszak D, Przybył J, Czajkowski Ł, Majka J, Pawłowski A. Effects of Harvest Maturity on the Chemical and Energetic Properties of Corn Stover Biomass Combustion. Materials. 2022; 15(8):2831. https://doi.org/10.3390/ma15082831
Chicago/Turabian StyleWojcieszak, Dawid, Jacek Przybył, Łukasz Czajkowski, Jerzy Majka, and Artur Pawłowski. 2022. "Effects of Harvest Maturity on the Chemical and Energetic Properties of Corn Stover Biomass Combustion" Materials 15, no. 8: 2831. https://doi.org/10.3390/ma15082831
APA StyleWojcieszak, D., Przybył, J., Czajkowski, Ł., Majka, J., & Pawłowski, A. (2022). Effects of Harvest Maturity on the Chemical and Energetic Properties of Corn Stover Biomass Combustion. Materials, 15(8), 2831. https://doi.org/10.3390/ma15082831