A Review on Reductions in the Stress-Intensity Factor of Cracked Plates Using Bonded Composite Patches
Abstract
:1. Introduction
2. Selection of Material in Aerospace Applications
2.1. Aerospace Industry: The Aluminium Alloys
2.2. Aerospace Industry: The Composite Materials
3. Methods of Repair
3.1. Mathematical Formulation
3.2. Numerical Simulation
3.3. Experimental Works
4. Discussion and Future Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Payne, A.O. The fatigue of aircraft structures. Eng. Fract. Mech. 1976, 8, 157–203. [Google Scholar] [CrossRef]
- Baker, A.A.; Rose, L.R.F.; Jones, R. Advances in the Bonded Composite Repair of Metallic Aircraft Structure; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- AERO News Network. Glasair, “Glasair Cracking,” 2013. Available online: http://www.aero-news.net/index.cfm?do=main.textpost&id=1fd1c27f-cf13-429a-857a-a54023c4a0c5 (accessed on 9 January 2020).
- Anderson, T.L. Fracture Mechanics; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 1995. [Google Scholar]
- Tada, H.; Paris, P.; Irwin, G. The Analysis of Crack Handbook; ASME Press: New York, NY, USA, 2000. [Google Scholar]
- Ratwani, M. Analysis of Cracked, Adhesively Bonded Laminated Structures. AIAA J. 1979, 17, 988–994. [Google Scholar] [CrossRef]
- Rose, L.R.F. An application of the inclusion analogy for bonded reinforcements. Int. J. Solids Struct. 1981, 17, 827–838. [Google Scholar] [CrossRef]
- Rose, L.R.F. A cracked plate repaired by bonded reinforcements. Int. J. Fract. 1982, 18, 135–144. [Google Scholar] [CrossRef]
- Guruprasad, K. Numerical estimation of stress intensity factor. Eng. Fract. Mech. 1987, 27, 559–569. [Google Scholar]
- Naboulsi, S.; Mall, S. Modeling of a cracked metallic structure with bonded composite patch using the three layer technique. Compos. Struct. 1996, 35, 295–308. [Google Scholar] [CrossRef]
- Kam, T.Y.; Tsai, Y.C.; Chu, K.H.; Wu, J.H. Fatigue analysis of cracked aluminum plates repaired with bonded composite patches. AIAA J. 1996, 346, 369–374. [Google Scholar] [CrossRef]
- Kumar, A.M.; Hakeem, S. Optimum design of symmetric composite patch repair to centre cracked metallic sheet. Compos. Struct. 2000, 49, 285–292. [Google Scholar] [CrossRef]
- Rabinovitch, O.; Frostig, Y. Fracture Mechanics Approach to Geometrically Nonlinear Debonding Problems in RC Beams Strengthened with Composite Materials. Adv. Struct. Eng. 2006, 9, 765–777. [Google Scholar] [CrossRef]
- Belhouari, M.; Bouiadjra, B.A.B.; Megueni, A.; Kaddouri, K. Comparison of double and single bonded repairs to symmetric composite structures: A numerical analysis. Compos. Struct. 2004, 65, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Albedah, A.; Bouiadjra, B.B.; Mhamdia, R.; Benyahia, F.; Es-Saheb, M. Comparison between double and single sided bonded composite repair with circular shape. Mater. Des. 2011, 32, 996–1000. [Google Scholar] [CrossRef]
- Iváñez, I.; Braun, M.N. Numerical analysis of surface cracks repaired with single and double patches of composites. J. Compos. Mater. 2017, 52, 1113–1120. [Google Scholar] [CrossRef]
- Benyahia, F.; Albedah, A.; Bouiadjra, B.B. Analysis of the adhesive damage for different patch shapes in bonded composite repair of aircraft structures. Mater. Des. 2014, 54, 18–24. [Google Scholar] [CrossRef]
- Fekirini, H.; Bouiadjra, B.B.; Belhouari, M.; Boutabout, B.; Serier, B. Numerical analysis of the performances of bonded composite repair with two adhesive bands in aircraft structures. Compos. Struct. 2008, 82, 84–89. [Google Scholar] [CrossRef]
- Oudad, W.; Bouiadjra, B.B.; Belhouari, M.; Touzain, S.; Feaugas, X. Analysis of the plastic zone size ahead of repaired cracks with bonded composite patch of metallic aircraft structures. Comput. Mater. Sci. 2009, 46, 950–954. [Google Scholar] [CrossRef]
- Bouiadjra, B.B.; Achour, T.; Berrahou, M.; Ouinas, D.; Feaugas, X. Numerical estimation of the mass gain between double symmetric and single bonded composite repairs in aircraft structures. Mater. Des. 2010, 31, 3073–3077. [Google Scholar] [CrossRef]
- Ricci, F.; Franco, F.; Monrefusco, N. Bonded Composite Patch Repairs on Cracked Aluminum Plates: Theory, Modeling and Experiments. In Advances in Composite Materials—Ecodesign and Analysis; InTechOpen: London, UK, 2011; pp. 445–464. [Google Scholar]
- Mhamdia, R.; Bouadjra, B.B.; Serier, B.; Ouddad, W.; Feaugas, X.; Touzain, S. Stress intensity factor for repaired crack with bonded composite patch under thermo-mechanical loading. J. Reinf. Plast. Compos. 2011, 30, 416–424. [Google Scholar] [CrossRef]
- Benyahia, F.; AlBedah, A.; Bouiadjra, B.A.B. Elliptical and circular bonded composite repair under mechanical and thermal loading in aircraft structures. Mater. Res. 2014, 17, 1219–1225. [Google Scholar] [CrossRef] [Green Version]
- Mhamdia, R.; Serier, B.; Albedah, A.; Bouiadjra, B.B.; Kaddouri, K. Numerical analysis of the influences of thermal stresses on the efficiency of bonded composite repair of cracked metallic panels. J. Compos. Mater. 2017, 51, 3701–3709. [Google Scholar] [CrossRef]
- Bouiadjra, B.B.; Belhouari, M.; Ranganathan, N. Evaluation of the Stress Intensity Factors for Patched Cracks with Bonded Composite Repairs in Mode I and Mixed Mode; WIT Press: Southampton, UK, 2000; pp. 1–8. [Google Scholar]
- Bouiadjra, B.B.; Belhouari, M.; Serier, B.; Achour, T. Computation of the stress intensity factors for repaired cracks with bonded composite patch in mode I and mixed mode. In High Performance Structures and Composites; Brebia, C.A., de Wilde, W., Eds.; WIT Press: Southampton, UK, 2002; pp. 367–377. [Google Scholar]
- Bouiadjra, B.B.; Belhouari, M.; Serier, B. Computation of the stress intensity factors for repaired cracks with bonded composite patch in mode I and mixed mode. Compos. Struct. 2002, 56, 401–406. [Google Scholar] [CrossRef]
- Achour, T.; Bouiadjra, B.; Serier, B. Numerical analysis of the performances of the bonded composite patch for reducing stress concentration and repairing cracks at notch. Comput. Mater. Sci. 2003, 28, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Megueni, A.; Bouiadjra, B.A.B.; Boutabout, B. Computation of the stress intensity factor for patched crack with bonded composite repair in pure mode II. Compos. Struct. 2003, 59, 415–418. [Google Scholar] [CrossRef]
- Ouinas, D.; Bouiadjra, B.; Serier, B. The effects of disbonds on the stress intensity factor of aluminium panels repaired using composite materials. Compos. Struct. 2007, 78, 278–284. [Google Scholar] [CrossRef]
- Bouiadjra, B.A.B.; Fekirini, H.; Serier, B.; Benguediab, M. SIF for Inclined Cracks Repaired with Double and Single Composite Patch. Mech. Adv. Mater. Struct. 2007, 14, 303–308. [Google Scholar] [CrossRef]
- Bouiadjra, B.B.; Fekirini, H.; Serier, B.; Benguediab, M. Numerical analysis of the beneficial effect of the double symmetric patch repair compared to single one in aircraft structures. Comput. Mater. Sci. 2007, 38, 824–829. [Google Scholar] [CrossRef]
- Aabid, A. Hybrid Repair of Cracked Plates Strengthened with Composite Patches and Piezoelectric Actuators. Ph.D. Thesis, International Islamic University Malaysia, Selangor, Malaysia, 2020. [Google Scholar]
- Reddy, S.; Jaswanthsai, V.; Madhavan, M.; Kumar, V. Notch stress intensity factor for center cracked plates with crack stop hole strengthened using CFRP: A numerical study. Thin-Walled Struct. 2016, 98, 252–262. [Google Scholar] [CrossRef]
- Maleki, H.; Chakherlou, T. Investigation of the effect of bonded composite patch on the mixed-mode fracture strength and stress intensity factors for an edge crack in aluminum alloy 2024-T3 plates. J. Reinf. Plast. Compos. 2017, 36, 1074–1091. [Google Scholar] [CrossRef]
- Khashaba, U.; Najjar, I. Adhesive layer analysis for scarf bonded joint in CFRE composites modified with MWCNTs under tensile and fatigue loads. Compos. Struct. 2018, 184, 411–427. [Google Scholar] [CrossRef]
- Rajendran, C.; Srinivasan, K.; Balasubramanian, V.; Balaji, H.; Selvaraj, P. Identifying combination of friction stir welding parameters to maximize strength of lap joints of AA2014-T6 aluminium alloy. Aust. J. Mech. Eng. 2017, 17, 64–75. [Google Scholar] [CrossRef]
- Starke, E.A., Jr.; Staley, J.T. Application of modern aluminum alloys to aircraft. Prog. Aerosp. Sci. 1996, 32, 131–172. [Google Scholar] [CrossRef]
- Williams, J.C.; Starke, E.A., Jr. Progress in structural materials for aerospace systems. Acta Mater. 2003, 51, 5775–5799. [Google Scholar] [CrossRef]
- Sankaran, K.; Perez, R.; Jata, K. Effects of pitting corrosion on the fatigue behavior of aluminum alloy 7075-T6: Modeling and experimental studies. Mater. Sci. Eng. A 2001, 297, 223–229. [Google Scholar] [CrossRef]
- Merati, A.A. A study of nucleation and fatigue behavior of an aerospace aluminum alloy 2024-T3. Int. J. Fatigue 2005, 27, 33–44. [Google Scholar] [CrossRef]
- De Siqueira, R.H.M.; Riva, R.; Costa, D.H.D.S.; Gonçalves, V.D.O.; De Lima, M.S.F. A crack propagation study on T-joints of AA6013-T4 aluminum alloy welded by an Yb:fiber laser. Int. J. Adv. Manuf. Technol. 2017, 92, 2831–2841. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Zhu, Y.-L.; Hou, S.; Sun, H.-X.; Zhou, Y. Investigation on fatigue performance of cold expansion holes of 6061-T6 aluminum alloy. Int. J. Fatigue 2017, 95, 216–228. [Google Scholar] [CrossRef]
- Autar, K. Kaw, Mechanics of Composite Materials; Taylor & Francis Group: Oxfordshire, UK, 2006; Volume 29. [Google Scholar]
- Mouritz, A.; Leong, K.; Herszberg, I. A review of the effect of stitching on the in-plane mechanical properties of fibre-reinforced polymer composites. Compos. Part A Appl. Sci. Manuf. 1997, 28, 979–991. [Google Scholar] [CrossRef]
- Baker, A. Bonded composite repair of fatigue-cracked primary aircraft structure. Compos. Struct. 1999, 47, 431–443. [Google Scholar] [CrossRef]
- Soutis, C. Fibre reinforced composites in aircraft construction. Prog. Aerosp. Sci. 2005, 41, 143–151. [Google Scholar] [CrossRef]
- Botelho, E.C.; Silva, R.A.; Pardini, L.C.; Rezende, M. A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Mater. Res. 2006, 9, 247–256. [Google Scholar] [CrossRef]
- Vasiliev, V.; Razin, A. Anisogrid composite lattice structures for spacecraft and aircraft applications. Compos. Struct. 2006, 76, 182–189. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Shim, C.S.; Sturtevant, C.; Kim, D.D.; Song, H.C. Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures. Int. J. Nav. Archit. Ocean Eng. 2014, 6, 723–736. [Google Scholar] [CrossRef] [Green Version]
- Lampani, L.; Gaudenzi, P. Innovative composite material component with embedded self-powered wireless sensor device for structural monitoring. Compos. Struct. 2018, 202, 136–141. [Google Scholar] [CrossRef]
- Lau, K.-T.; Hung, P.-Y.; Zhu, M.-H.; Hui, D. Properties of natural fibre composites for structural engineering applications. Compos. Part B Eng. 2018, 136, 222–233. [Google Scholar] [CrossRef]
- Nayak, N.V. Composite materials in aerospace design. Mater. Des. 2014, 4, 1–10. [Google Scholar] [CrossRef]
- Ahn, J.S.; Basu, P.K.; Woo, K.S. Analysis of cracked aluminum plates with one-sided patch repair using p-convergent layered model. Finite Elements Anal. Des. 2010, 46, 438–448. [Google Scholar] [CrossRef]
- Ahn, J.S.; Basu, P.K. Locally refined p-FEM modeling of patch repaired plates. Compos. Struct. 2011, 93, 1704–1716. [Google Scholar] [CrossRef]
- Andersson, R.; Larsson, F.; Kabo, E. Evaluation of stress intensity factors under multiaxial and compressive conditions using low order displacement or stress field fitting. Eng. Fract. Mech. 2018, 189, 204–220. [Google Scholar] [CrossRef]
- Talebi, B.; Abedian, A. Optimization of composite patch repair for maximum stability of crack growth in an aluminum plate. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2017, 231, 3690–3701. [Google Scholar] [CrossRef]
- Hattori, G.; Alatawi, I.A.; Trevelyan, J. An extended boundary element method formulation for the direct calculation of the stress intensity factors in fully anisotropic materials. Int. J. Numer. Methods Eng. 2017, 109, 965–981. [Google Scholar] [CrossRef] [Green Version]
- Oudad, W.; Belhadri, D.E.; Fekirini, H.; Khodja, M. Analysis of the plastic zone under mixed mode fracture in bonded composite repair of aircraft structures. Aerosp. Sci. Technol. 2017, 69, 404–411. [Google Scholar] [CrossRef]
- Yu, H.; Kuna, M. A J-Interaction Integral to Compute Force Stress and Couple Stress Intensity Factors for Cracks in Functionally Graded Micropolar Materials. In Advances in Mechanics of Materials and Structural Analysis; Springer: Cham, Switzerland, 2018; pp. 419–448. [Google Scholar] [CrossRef]
- Wang, H.-T.; Wu, G.; Pang, Y.-Y. Theoretical and Numerical Study on Stress Intensity Factors for FRP-Strengthened Steel Plates with Double-Edged Cracks. Sensors 2018, 18, 2356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassetti, A.; Colombi, P.; Nussbaumer, A. Finite Element Analysis of Steel Members Repaired By Prestressed Composite Patch. In Atti IGF 2000, XV Convegno Nazionale del Gruppo Italiano Frattura; Politecnico di Milano: Milano, Italy, 2000; Volume 15, pp. 1–10. [Google Scholar]
- Ouinas, D.; Hebbar, A.; Olay, J.V. Fracture Mechanics Modelling of Cracked Aluminium Panel Repaired with Bonded Composite Circular Patch. J. Appl. Sci. 2006, 6, 2088–2095. [Google Scholar] [CrossRef] [Green Version]
- Hosseini-Toudeshky, H.; Mohammadi, B.; Sadeghi, G.; Daghyani, H. Numerical and experimental fatigue crack growth analysis in mode-I for repaired aluminum panels using composite material. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1141–1148. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Badalouka, B.; Souyiannis, J. Experimental Study of the Reduction at Crack-Tip Stress Intensity Factor KI by Bonded Patches. Int. J. Fract. 2008, 149, 199–205. [Google Scholar] [CrossRef]
- Tsouvalis, N.G.; Mirisiotis, L.S.; Dimou, D.N. Experimental and numerical study of the fatigue behaviour of composite patch reinforced cracked steel plates. Int. J. Fatigue 2009, 31, 1613–1627. [Google Scholar] [CrossRef]
- Lam, A.C.C.; Yam, M.C.H.; Cheng, J.J.R.; Kennedy, G.D. Study of Stress Intensity Factor of a Cracked Steel Plate with a Single-Side CFRP Composite Patching. J. Compos. Constr. 2010, 14, 791–803. [Google Scholar] [CrossRef]
- Ergun, E.; Tasgetiren, S.; Topcu, M. Stress intensity factor estimation of repaired aluminum plate with bonded composite patch by combined genetic algorithms and FEM under temperature effects. Indian J. Eng. Mater. Sci. 2012, 19, 17–23. [Google Scholar]
- Ouinas, D.; Achour, B.; Bouiadjra, B.A.B.; Taghezout, N. The optimization thickness of single/double composite patch on the stress intensity factor reduction. J. Reinf. Plast. Compos. 2013, 32, 654–663. [Google Scholar] [CrossRef]
- Tong, L.; Li, S.; Xiong, J. Material parameter modeling and solution technique using birth–death element for notched metallic panel repaired with bonded composite patch. Chin. J. Aeronaut. 2014, 27, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Srilakshmi, R.; Ramji, M.; Chinthapenta, V. Fatigue crack growth study of CFRP patch repaired Al 2014-T6 panel having an inclined center crack using FEA and DIC. Eng. Fract. Mech. 2015, 134, 182–201. [Google Scholar] [CrossRef]
- Talebi, B.; Abedian, A. Numerical modeling of adhesively bonded composite patch repair of cracked aluminum panels with concept of CZM and XFEM. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2016, 230, 1448–1466. [Google Scholar] [CrossRef]
- Vishnuvardhan, N.L.; Pathak, H.; Singh, A. Composite Patch Repair Modelling by FEM. In Proceedings of the First Structural Integrity Conference and Exhibition (SICE-2016), Bangalore, India, 4–6 July 2016; pp. 4–9. [Google Scholar]
- Shinde, P.S.; Kumar, P.; Singh, K.K.; Tripathi, V.K.; Aradhi, S.; Sarkar, P.K. The role of yield stress on cracked thin panels of aluminum alloys repaired with a fRP patch. J. Adhes. 2017, 93, 412–429. [Google Scholar] [CrossRef]
- Mahesha, B.K.; Durai, D.T.; Karuppannan, D.; Kumar, K.D. Linear Elastic Fracture Mechanics (LEFM)-Based Single Lap Joint (SLJ) Mixed-Mode Analysis for Aerospace Structures. In Proceedings of Fatigue, Durability and Fracture Mechanics; Springer: Singapore, 2017; pp. 53–66. [Google Scholar] [CrossRef]
- Sadek, K.; Aour, B.; Bouiadjra, B.A.B.; Bouanani, M.F.; Khelil, F. Analysis of Crack Propagation by Bonded Composite for Different Patch Shapes Repairs in Marine Structures: A Numerical Analysis. Int. J. Eng. Res. Afr. 2018, 35, 175–184. [Google Scholar] [CrossRef]
- Aabid, A.; Hrairi, M.; Ali, J.S.M.; Abuzaid, A. Numerical Analysis of Cracks Emanating from Hole in Plate Repaired by Composite Patch. Int. J. Mech. Prod. Eng. Res. Dev. 2018, 4, 38–243. [Google Scholar]
- Aabid, A.; Hrairi, M.; Ali, J.S.M.; Abuzaid, A. Stress Concentration Analysis of a Composite Patch on a Hole in an Isotropic Plate. Int. J. Mech. Prod. Eng. Res. Dev. 2018, 6, 249–255. [Google Scholar]
- Aabid, A.; Hrairi, M.; Ali, J.S.M.; Abuzaid, A. Effect of bonded composite patch on the stress intensity factors for a center-cracked plate. IIUM Eng. J. 2019, 20, 211–221. [Google Scholar] [CrossRef]
- Baghdadi, M.; Serier, B.; Salem, M.; Zaoui, B.; Kaddouri, K. Modeling of a cracked and repaired Al 2024T3 aircraft plate: Effect of the composite patch shape on the repair performance. Frat. Integrità Strutt. 2019, 13, 68–85. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, K.; Safarabadi, M.; Ganjiani, M.; Mohammadi, E. Experimental and numerical fatigue life study of cracked AL plates reinforced by glass/epoxy composite patches in different stress ratios. Mech. Based Des. Struct. Mach. 2020, 49, 894–910. [Google Scholar] [CrossRef]
- Bouzitouna, W.N.; Oudad, W.; Belhamiani, M.; Belhadri, D.E.; Zouambi, L. Elastoplastic analysis of cracked Aluminum plates with a hybrid repair technique using the bonded composite patch and drilling hole in opening mode I. Frat. Integrità Strutt. 2020, 14, 256–268. [Google Scholar] [CrossRef]
- Berrahou, M.; Benzineb, H.; Serier, M. Analysis of the adhesive damage for different shapes and types patch’s in Aircraft Structures corroded with an inclined crack. Frat. Integrità Strutt. 2022, 16, 331–345. [Google Scholar] [CrossRef]
- Street, P. Steel Pipeline Flanges. Coatings 2021, 11, 13. [Google Scholar]
- Salem, M.; Berrahou, M.; Mechab, B.; Bouiadjra, B.B. Analysis of the Adhesive Damage for Different Patch Shapes in Bonded Composite Repair of Corroded Aluminum Plate Under Thermo-Mechanical Loading. J. Fail. Anal. Prev. 2021, 21, 1274–1282. [Google Scholar] [CrossRef]
- Lepretre, E.; Chataigner, S.; Dieng, L.; Gaillet, L. Stress Intensity Factor Assessment for the Reinforcement of Cracked Steel Plates Using Prestressed or Non-Prestressed Adhesively Bonded CFRP. Materials 2021, 14, 1625. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.M.; Chu, C.S.; McGee, W.M. Gnit l Characteristics i f a Fatigue Cracl Approaching and Growiig Beneath an Adhesiielf Bonded Oouble. Trans. ASME 1978, 100, 52–56. [Google Scholar]
- Jurf, R.A.; Pipes, R.B. Composite Materials nlike Ucomposite. J. Compos. Mater. 1982, 16, 386–394. [Google Scholar] [CrossRef]
- Ravi-Chandar, K.; Knauss, W.G. An experimental investigation into dynamic fracture: I. Crack initiation and arrest. Int. J. Fract. 1984, 25, 247–262. [Google Scholar] [CrossRef]
- Baker, A.A. Repair efficiency in fatigue-cracked aluminium components reinforced with boron/epoxy patches. Fatigue Fract. Eng. Mater. Struct. 1993, 16, 753–765. [Google Scholar] [CrossRef]
- Seo, D.-C.; Lee, J.-J. Fatigue crack growth behavior of cracked aluminum plate repaired with composite patch. Compos. Struct. 2002, 57, 323–330. [Google Scholar] [CrossRef]
- Chen, T.; Huang, C.; Hu, L.; Song, X. Experimental study on mixed-mode fatigue behavior of center cracked steel plates repaired with CFRP materials. Thin-Walled Struct. 2019, 135, 486–493. [Google Scholar] [CrossRef]
- Zarrinzadeh, H.; Kabir, M.; Deylami, A. Experimental and numerical fatigue crack growth of an aluminium pipe repaired by composite patch. Eng. Struct. 2017, 133, 24–32. [Google Scholar] [CrossRef]
- Seriari, F.Z.; Benachour, M.; Benguediab, M. Fatigue crack growth of composite patch repaired Al-alloy plates under variable amplitude loading. Frat. Integrità Strutt. 2018, 12, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Albedah, A.; Bouiadjra, B.B.; Benyahia, F.; Mohammed, S.M.K. Effects of adhesive disbond and thermal residual stresses on the fatigue life of cracked 2024-T3 aluminum panels repaired with a composite patch. Int. J. Adhes. Adhes. 2018, 87, 22–30. [Google Scholar] [CrossRef]
- Hart, D.C.; Bruck, H.A. Characterization and Modeling of Low Modulus Composite Patched Aluminum Center Crack Tension Specimen Using DIC Surface Displacements. In Fracture, Fatigue, Failure and Damage Evolution; Springer: Cham, Switzerland, 2018; Volume 6, pp. 31–43. [Google Scholar] [CrossRef]
- Bouchkara, N.H.M.; Albedah, A.; Benyahia, F.; Mohammed, S.M.A.K.; Bouiadjra, B.A.B. Experimental and Numerical Analyses of the Effects of Overload on the Fatigue Life of Aluminum Alloy Panels Repaired with Bonded Composite Patch. Int. J. Aeronaut. Space Sci. 2021, 22, 1075–1084. [Google Scholar] [CrossRef]
- Mohammed, S.M.A.K.; Bouiadjra, B.B.; Benyahia, F.; Albedah, A. Analysis of the single overload effect on fatigue crack growth in AA 2024-T3 plates repaired with composite patch. Eng. Fract. Mech. 2018, 202, 147–161. [Google Scholar] [CrossRef]
- AlBedah, A.; Bouiadjra, B.B.; Mohammed, S.M.A.K.; Benyahia, F. Fractographic analysis of the overload effect on fatigue crack growth in 2024-T3 and 7075-T6 Al alloys. Int. J. Miner. Met. Mater. 2020, 27, 83–90. [Google Scholar] [CrossRef]
- Mohammed, S.M.K.; Mhamdia, R.; Albedah, A.; Bouiadjra, B.A.B.; Bouiadjra, B.B.; Benyahia, F. Fatigue crack growth in aluminum panels repaired with different shapes of single-sided composite patches. Int. J. Adhes. Adhes. 2020, 105, 102781. [Google Scholar] [CrossRef]
- Katnam, K.; Da Silva, L.; Young, T. Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities. Prog. Aerosp. Sci. 2013, 61, 26–42. [Google Scholar] [CrossRef]
- Radaj, D. State-of-the-art review on extended stress intensity factor concepts. Fatigue Fract. Eng. Mater. Struct. 2014, 37, 1–28. [Google Scholar] [CrossRef]
- Aabid, A.; Hrairi, M.; Abuzaid, A.; Syed, J.; Ali, M. Estimation of stress intensity factor reduction for a center-cracked plate integrated with piezoelectric actuator and composite patch. Thin-Walled Struct. 2021, 158, 107030. [Google Scholar] [CrossRef]
- Hu, D.; Yang, Q.; Liu, H.; Mao, J.; Meng, F. Crack closure effect and crack growth behavior in GH2036 superalloy plates under combined high and low cycle fatigue. Int. J. Fatigue 2016, 95, 90–103. [Google Scholar] [CrossRef]
- Amaral, L.; Alderliesten, R.; Benedictus, R. Understanding Mixed-Mode Cyclic Fatigue Delamination Growth in unidirectional composites: An experimental approach. Eng. Fract. Mech. 2017, 180, 161–178. [Google Scholar] [CrossRef] [Green Version]
- Daryabor, P.; Safizadeh, M.S. Investigation of defect characteristics and heat transfer in step heating thermography of metal plates repaired with composite patches. Infrared Phys. Technol. 2016, 76, 608–620. [Google Scholar] [CrossRef]
Type of Structure | Technique Adopted | Number/Types of Composite Patches | Focused Parameters | Opportunity for Further Research | Reference |
---|---|---|---|---|---|
Aluminium plate | LEFM and ANSYS simulation | Composite patch with piezoelectric actuator | SIF repaired and unrepaired plate | Experimental investigation for validation of numerical results | [103] |
Aluminium plate | Design of experiments | Single-sided composite patch | The optimum solution for SIF reduction | Further continued with a double-sided composite patch | [33] |
Aluminium plate | ANSYS simulation | Composite patch with piezoelectric actuator | Effect of patch on SCF reduction | Experimental investigation for validation of numerical results | [77] |
Aluminium plate | J integral/FEM | 1 (carbon/epoxy patch) | fatigue-crack propagation | The dimension of the patch can be also redefined | [95] |
Aluminium plate | von Mises stress, J integral/FE model (ABAQUS) | 1 (boron/epoxy patch) | Fatigue life/failure criteria/crack tip under plastic zone | SIF can be calculated in this case | [59] |
Superalloy (novel model) | High- and low-cycle fatigue (CCF) loading | No patch | Crack-closure effect and Crack-growth behaviour | Effect of using composite patches on SIF | [104] |
32 layers of carbon-fibre-reinforced epoxy plate | Strain energy release rate (G) for stress-ratio effect | No patch | Mixed-mode fatigue delamination growth/damage mechanisms/crack- growth rate | Delamination control | [105] |
Aluminium plate | Step heating thermography/ANSYS simulation | 1 (carbon/epoxy patch) | Evaluated the effects of defect type (delamination and disbond)/heat transfer | Evaluate SIF | [106] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aabid, A.; Hrairi, M.; Ali, J.S.M.; Sebaey, T.A. A Review on Reductions in the Stress-Intensity Factor of Cracked Plates Using Bonded Composite Patches. Materials 2022, 15, 3086. https://doi.org/10.3390/ma15093086
Aabid A, Hrairi M, Ali JSM, Sebaey TA. A Review on Reductions in the Stress-Intensity Factor of Cracked Plates Using Bonded Composite Patches. Materials. 2022; 15(9):3086. https://doi.org/10.3390/ma15093086
Chicago/Turabian StyleAabid, Abdul, Meftah Hrairi, Jaffar Syed Mohamed Ali, and Tamer Ali Sebaey. 2022. "A Review on Reductions in the Stress-Intensity Factor of Cracked Plates Using Bonded Composite Patches" Materials 15, no. 9: 3086. https://doi.org/10.3390/ma15093086
APA StyleAabid, A., Hrairi, M., Ali, J. S. M., & Sebaey, T. A. (2022). A Review on Reductions in the Stress-Intensity Factor of Cracked Plates Using Bonded Composite Patches. Materials, 15(9), 3086. https://doi.org/10.3390/ma15093086