Effect of the Acidity Coefficient on the Properties of Molten Modified Blast Furnace Slag and Those of the Produced Slag Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Raw Materials
2.2. Viscosity Experiment
2.3. Crystallization Properties
2.4. Centrifuging Fibrosis of Modified Blast Furnace Slag
2.5. Fiber Properties
3. Results and Discussion
3.1. Viscosity of Molten Modified Blast Furnace Slag
3.2. Crystallization Properties
3.3. Performance Analysis of the Slag Fibers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, D.W.; Zhang, Z.T.; Tang, X.L.; Liu, L.L.; Wang, X.D. Preparation of slag wool by integrated waste-heat recovery and resource recycling of molten blast furnace slags: From fundamental to industrial application. Energies 2014, 7, 3121–3135. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.L.; Liu, Y.; Li, Y.Q. Status and development of mineral wool made from molten blast furnace slag. Baosteel Tech. Res. 2011, 5, 3–8. [Google Scholar]
- Li, J.; Liu, W.X.; Zhang, Y.Z.; Yang, A.M.; Zhao, K. Research on modifying blast furnace slag as a raw material of slag fiber. Mater. Manuf. Process. 2015, 30, 374–380. [Google Scholar] [CrossRef]
- Tang, X.L.; Zhang, Z.T.; Guo, M.; Zhang, M.; Wang, X.D. Viscosities behavior of CaO-SiO2-MgO-Al2O3 slag with low mass ratio of CaO to SiO2 and wide range of Al2O3 content. J. Iron Steel Res. Int. 2011, 18, 1–6. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Li, J.B.; Jiang, Z.Z. Glass Fibre and Mineral Wool Encyclopedia, 1st ed.; Chemical Industry Press: Beijing, China, 2001; p. 639. [Google Scholar]
- Wang, H.; Wang, X.J.; Gui, F.; Zhang, X.C.; Wu, S.Y.; Jiang, W.H. The status and prospect of blast furnace slag resource utilization. Ind. Miner. Processing 2021, 50, 48–53. [Google Scholar]
- Shi, G.C.; Liao, Y.L.; Zhang, Y.; Su, B.W.; Wang, W. Research progress on preparation of building materials and functional materials with copper metallurgical slag. Mater. Rep. 2020, 34, 13044–13049, 13057. [Google Scholar]
- Mastali, M.; Zahra, A.; Hugo, K.; Faraz, R. Utilization of mineral wools in production of alkali activated materials. Constr. Build. Mater. 2021, 283, 122790. [Google Scholar] [CrossRef]
- Juho, Y.; Paivo, K.; Pasi, K.; Mirja, L. Utilization of Mineral Wools as Alkali-Activated Material Precursor. Materials 2016, 9, 312. [Google Scholar]
- Zhang, J.; Yan, D.L.; Qi, Y.H.; Shen, P.F.; Xu, H.J.; Gao, J.J. Difficulty analysis on treatment and utilization of iron and steel smelting slag. Iron Steel 2020, 55, 1–5. [Google Scholar]
- Sun, Z.Q.; Li, J.M.; Yin, J.Y.; Liu, Q.W.; Hu, Z.Y. Resource utilization of multi industry solid waste in building materials industry. China Chem. 2020, 26, 114–117. [Google Scholar]
- Swinbourne, D.R. Understanding ferronickel smelting from laterites through computational thermodynamics modelling. Miner. Process. Extr. Metall. Rev. 2014, 123, 127–140. [Google Scholar] [CrossRef]
- Wang, W.L.; Dai, S.F.; Zhou, L.J.; Zhang, T.S.; Tian, W.G.; Xu, J.L. Effect of B2O3 on the properties of ferronickel melt and mineral wool. Ceram. Int. 2020, 46, 13460–13465. [Google Scholar] [CrossRef]
- Hussein, A.D.; Rifat, B.; Scott Garland, G.; Christopher, R.C. Utilization of blast-furnace slag as a standalone stabilizer for high sulfate-bearing Soils. J. Mater. Civ. Eng. 2021, 33, 04021257. [Google Scholar]
- Huang, W.; Qin, Z.R.; Qu, Y.L.; Xing, N. Situation analysis of iron and steel industry in 2021 and prospect in 2022. Metall. Econ. Manag. 2022, 37, 19–21. [Google Scholar]
- Li, Z.H.; Zhang, Y.J.; Zhang, Y.Z.; Du, P.P.; Ren, Q.Q. Effect of content of Al2O3 and MgO on crystallization of blast furnace slag during fiber formation. J. Cent. South Univ. 2018, 25, 2373–2379. [Google Scholar] [CrossRef]
- Ren, Q.Q.; Zhang, Y.Z.; Long, Y.; Zou, Z.S.; Pei, J.J. Crystallisation behaviour of blast furnace slag modified by adding fly as. Ceram. Int. 2018, 44, 11628–11634. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.L.; Zhao, G.Z.; Cang, D.Q. Pilot practice of direct modification of molten blast furnace slag and preparation of mineral wool fiber. Iron Steel 2017, 52, 99–103. [Google Scholar]
- Fan, J.F.; Xiao, Y.L.; Li, Y.Q. Experimemtal process research for slag wool produced by liquid BF slag. In Proceedings of the 2021 Annual Conference of Science and Technology of Chinese Society of Environmental Sciences—Collection of Field Papers of Branch of Environmental Engineering Technology Innovation and Application, Tianjin, China, 20 October 2021; Volume 2021, pp. 144, 282–283. [Google Scholar]
- Li, Z.H. Fibering mechanism of modified molten blast furnace slag and experimental research. Ph.D. Thesis, Northeastern University, Shenyang, China, 2016. [Google Scholar]
- Gao, J.X.; Wen, G.H.; Huang, T.; Tang, P.; Liu, Q. Effects of the composition on the structure and viscosity of the CaO-SiO2-based mold flux. J. Non-Cryst. Solids 2016, 435, 33–39. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Bandopadhyay, A.; Alex, T.C.; Kumar, B.R.; Das, S.K.; Mehrotra, S.P. Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement. Cem. Concr. Compos. 2008, 30, 679–685. [Google Scholar] [CrossRef]
- Li, L.X.; Jia, R. Physical Chemistry of Silicate, 2nd ed.; Tianjin University Press: Tianjin, China, 2016; pp. 111–112. [Google Scholar]
- Yang, C.F.; Cheng, C.M. The influence of B2O3 on the sintering of MgO-CaO-Al2O3- SiO2 composite glass powder. Ceram. Int. 1999, 25, 383–387. [Google Scholar] [CrossRef]
- Tulyaganov, D.U.; Agathopoulos, S.; Ventura, J.M.; Karakassides, M.A.; Fabrichnaya, O.; Ferreira, J.M.F. Synthesis of glass-ceramics in the CaO-MgO-SiO2 system with B2O3, P2O5, Na2O and CaF2 additives. J. Eur. Ceram. Soc. 2006, 26, 1463–1471. [Google Scholar] [CrossRef]
- Zhao, Y.Z.; Yin, H.R. Glass Technology, 2nd ed.; Chemical Technology Press: Beijing, China, 2016; pp. 26–31. [Google Scholar]
- Wang, X.X. Iron and Steel Metallurgy (Ironmaking), 2nd ed.; Metallurgical Industry Press: Beijing, China, 2000; pp. 110–111. [Google Scholar]
- Li, J. Fundamental Research on Modification Process of Direct Fiber-Forming by Blast Furnace Molten Slag. Ph.D. Thesis, Northeastern University, Shenyang, China, 2015. [Google Scholar]
- Ren, Q.Q.; Zhang, Y.Z.; Long, Y.; Chen, S.S.; Zou, Z.S.; Xu, C.G. Crystallization behavior of blast furnace slag modified by adding iron ore tailing. J. Iron Steel Res. Int. 2017, 24, 601–607. [Google Scholar] [CrossRef]
- Lu, P.W. Fundamentals of Inorganic Materials Science (Silicate Physicochemistry), 1st ed.; Wuhan University of Technology Press: Wuhan, China, 1996; pp. 77–79. [Google Scholar]
- Wan, J.P. Study on the Component, Structure and Properties of Borosilicate Float Glass. Ph.D. Thesis, Wuhan University of Technology, Wuhan, China, 2008. [Google Scholar]
- Shi, Y.T.; Yao, Z.Q. Study on test method and influencing factors of glass hardening rate. Fiber Glass 1987, 16, 5–11. [Google Scholar]
Raw Material | SiO2 | CaO | MgO | Al2O3 | TiO2 | K2O | Na2O | Fe2O3 | FeO |
---|---|---|---|---|---|---|---|---|---|
Blast furnace slag | 32.60 | 36.43 | 8.72 | 15.44 | 1.55 | 0.71 | 0.55 | 0.07 | 0.46 |
Iron tailings | 67.41 | 2.78 | 2.60 | 12.13 | 0.31 | 4.25 | 2.89 | 1.66 | 4.42 |
Number | Mk | Composition of Modified Slag | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | CaO | MgO | Al2O3 | TiO2 | K2O | Na2O | Fe2O3 | FeO | ||
No.1 | 1.2 | 35.32 | 33.81 | 8.24 | 15.18 | 1.45 | 0.99 | 0.73 | 0.20 | 0.77 |
No.2 | 1.3 | 37.06 | 32.12 | 7.94 | 15.02 | 1.39 | 1.16 | 0.85 | 0.28 | 0.97 |
No.3 | 1.4 | 38.66 | 30.57 | 7.66 | 14.86 | 1.33 | 1.33 | 0.96 | 0.35 | 1.15 |
No.4 | 1.5 | 40.12 | 29.16 | 7.40 | 14.73 | 1.28 | 1.47 | 1.06 | 0.42 | 1.32 |
No.5 | 1.6 | 41.44 | 27.88 | 7.17 | 14.60 | 1.24 | 1.61 | 1.14 | 0.48 | 1.47 |
Mk | T3Pa·S | T1 Pa·s | T1–3 Pa·s | Tm | Ts |
---|---|---|---|---|---|
1.2 | 1295.7 | 1396.9 | 101.2 | 1326.2 | 70.7 |
1.3 | 1299.3 | 1412.2 | 112.9 | 1341.1 | 71.1 |
1.4 | 1318.3 | 1431.4 | 113.1 | 1359.6 | 71.8 |
1.5 | 1333.1 | 1452.9 | 119.8 | 1376.1 | 76.8 |
1.6 | 1351.7 | 1471.6 | 119.9 | 1388.7 | 82.9 |
Mk | The Water Quenching Temperature of Molten Modified Blast Furnace Slag | |||
---|---|---|---|---|
1.2 | 1400 | 1300 | 1250 | 1200 |
1.3 | 1350 | 1250 | 1200 | 1150 |
1.4 | 1300 | 1200 | 1150 | 1100 |
1.5 | 1250 | 1150 | 1100 | 1050 |
1.6 | 1250 | 1150 | 1100 | 1050 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, P.; Zhang, Y.; Long, Y.; Xing, L. Effect of the Acidity Coefficient on the Properties of Molten Modified Blast Furnace Slag and Those of the Produced Slag Fibers. Materials 2022, 15, 3113. https://doi.org/10.3390/ma15093113
Du P, Zhang Y, Long Y, Xing L. Effect of the Acidity Coefficient on the Properties of Molten Modified Blast Furnace Slag and Those of the Produced Slag Fibers. Materials. 2022; 15(9):3113. https://doi.org/10.3390/ma15093113
Chicago/Turabian StyleDu, Peipei, Yuzhu Zhang, Yue Long, and Lei Xing. 2022. "Effect of the Acidity Coefficient on the Properties of Molten Modified Blast Furnace Slag and Those of the Produced Slag Fibers" Materials 15, no. 9: 3113. https://doi.org/10.3390/ma15093113