Effect of Growth Temperature and Atmosphere Exposure Time on Impurity Incorporation in Sputtered Mg, Al, and Ca Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Al Capping to Prevent Impurity Incorporation by Atmosphere Exposure
3.2. Impurity Incorporation under Atmosphere Exposure
3.2.1. Atmosphere Exposure Time
3.2.2. Influence of Synthesis Temperature
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, S.N.; Kioussis, N.; Lim, S.-P.; Gonis, A.; Gourdin, W.H. Impurity Effects on Atomic Bonding in Ni3Al. Phys. Rev. B 1995, 52, 14421–14430. [Google Scholar] [CrossRef] [PubMed]
- Barna, P.B.; Adamik, M. Fundamental Structure Forming Phenomena of Polycrystalline Films and the Structure Zone Models. Thin Solid Film. 1998, 317, 27–33. [Google Scholar] [CrossRef]
- Volkert, C.A.; Donohue, A.; Spaepen, F. Effect of Sample Size on Deformation in Amorphous Metals. J. Appl. Phys. 2008, 103, 083539. [Google Scholar] [CrossRef]
- Ma, H.; Ding, X.; Zhang, L.; Sun, Y.; Liu, T.; Ren, Q.; Liao, Y. Segregation of Interstitial Light Elements at Grain Boundaries in Molybdenum. Mater. Today Commun. 2020, 25, 101388. [Google Scholar] [CrossRef]
- Peter, N.J.; Zander, D.; Cao, X.; Tian, C.; Zhang, S.; Du, K.; Scheu, C.; Dehm, G. Preferred Corrosion Pathways for Oxygen in Al2Ca—Twin Boundaries and Dislocations. J. Alloys Compd. 2023, 936, 168296. [Google Scholar] [CrossRef]
- Chowdhury, P.; Barshilia, H.C.; Rajam, K.S.; Mishra, P.K.; Prajapat, C.L.; Sridhara Rao, D.V. Role of Oxygen Impurity in Growth and Magnetic Properties of Ni83Fe17 Permalloy Thin Films. J. Magn. Magn. Mater. 2010, 322, 3266–3270. [Google Scholar] [CrossRef]
- Braeckman, B.R.; Djemia, P.; Tétard, F.; Belliard, L.; Depla, D. Impurity-Controlled Film Growth and Elastic Properties of CoCrCuFeNi Thin Films. Surf. Coat. Technol. 2017, 315, 475–483. [Google Scholar] [CrossRef]
- Cougnon, F.G.; Schramm, I.C.; Depla, D. On the Electrical Properties of Sputter Deposited Thin Films: The Role of Energy and Impurity Flux. Thin Solid Film. 2019, 690, 137540. [Google Scholar] [CrossRef]
- Marimuthu, K.P.; Lee, K.; Han, J.; Rickhey, F.; Lee, H. Nanoindentation of Zirconium Based Bulk Metallic Glass and Its Nanomechanical Properties. J. Mater. Res. Technol. 2020, 9, 104–114. [Google Scholar] [CrossRef]
- Zhang, S.; Xie, Z.; Keuter, P.; Ahmad, S.; Abdellaoui, L.; Zhou, X.; Cautaerts, N.; Breitbach, B.; Aliramaji, S.; Korte-Kerzel, S.; et al. Atomistic Structures of 〈0001〉 Tilt Grain Boundaries in a Textured Mg Thin Film. Nanoscale 2022, 14, 18192–18199. [Google Scholar] [CrossRef]
- Petrov, I.; Barna, P.B.; Hultman, L.; Greene, J.E. Microstructural Evolution during Film Growth. J. Vac. Sci. Technol. A Vac. Surf. Film. 2003, 21, S117–S128. [Google Scholar] [CrossRef]
- Greczynski, G.; Mráz, S.; Hultman, L.; Schneider, J.M. Venting Temperature Determines Surface Chemistry of Magnetron Sputtered TiN Films. Appl. Phys. Lett. 2016, 108, 041603. [Google Scholar] [CrossRef] [Green Version]
- Keuter, P.; Ravensburg, A.L.; Hans, M.; Aghda, S.K.; Holzapfel, D.M.; Primetzhofer, D.; Schneider, J.M. A Proposal for a Composite with Temperature-Independent Thermophysical Properties: Hfv2–Hfv2 O7. Materials 2020, 13, 5021. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Z.; Awadelkarim, O.O.; Couillard, J.G.; Ast, D.G. The Effects of Substrates on the Characteristics of Polycrystalline Silicon Thin Film Transistors. Solid State Electron. 1998, 42, 1689–1696. [Google Scholar] [CrossRef]
- Schneider, J.M.; Hjörvarsson, B.; Wang, X.; Hultman, L. On the Effect of Hydrogen Incorporation in Strontium Titanate Layers Grown by High Vacuum Magnetron Sputtering. Appl. Phys. Lett. 1999, 75, 3476–3478. [Google Scholar] [CrossRef]
- Cougnon, F.G.; Dulmaa, A.; Dedoncker, R.; Galbadrakh, R.; Depla, D. Impurity Dominated Thin Film Growth. Appl. Phys. Lett. 2018, 112, 221903. [Google Scholar] [CrossRef] [Green Version]
- Gan, L.; Gomez, R.D.; Powell, C.J.; McMichael, R.D.; Chen, P.J.; Egelhoff, W.F. Thin Al, Au, Cu, Ni, Fe, and Ta Films as Oxidation Barriers for Co in Air. J. Appl. Phys. 2003, 93, 8731–8733. [Google Scholar] [CrossRef] [Green Version]
- Greczynski, G.; Petrov, I.; Greene, J.E.; Hultman, L. Al Capping Layers for Nondestructive X-Ray Photoelectron Spectroscopy Analyses of Transition-Metal Nitride Thin Films. J. Vac. Sci. Technol. A Vac. Surf. Film. 2015, 33, 05E101. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Nama Manjunatha, K.; Govindarajan, S.; Paul, S. Single Step Ohmic Contact for Heavily Doped N-Type Silicon. Appl. Surf. Sci. 2020, 506, 144686. [Google Scholar] [CrossRef]
- Movchan, B.A.; Demchishin, A. V Structure and properties of thick condensates of nickel, titanium, tungsten, aluminum oxides, and zirconium dioxide in vacuum. Fiz. Met. Metalloved. 1969, 28, 653–660. [Google Scholar]
- Thornton, J.A. Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings. J. Vac. Sci. Technol. 1974, 11, 666–670. [Google Scholar] [CrossRef]
- Thornton, J.A. The Microstructure of Sputter-deposited Coatings. J. Vac. Sci. Technol. A Vac. Surf. Film. 1986, 4, 3059–3065. [Google Scholar] [CrossRef]
- Cao, Q.P.; Lv, L.B.; Wang, X.D.; Jiang, J.Z.; Fecht, H.J. Synthesis and Properties Optimization of High-Performance Nanostructured Metallic Glass Thin Films. Mater. Today Nano 2021, 14, 100114. [Google Scholar] [CrossRef]
- Zhang, Y.; Whitlow, H.J.; Winzell, T.; Bubb, I.F.; Sajavaara, T.; Arstila, K.; Keinonen, J. Detection Efficiency of Time-of-Flight Energy Elastic Recoil Detection Analysis Systems. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1999, 149, 477–489. [Google Scholar] [CrossRef]
- Janson, M.S. Contes Instruction Manual; Uppsala University: Uppsala, Sweden, 2004. [Google Scholar]
- Baben, M.; Hans, M.; Primetzhofer, D.; Evertz, S.; Ruess, H.; Schneider, J.M. Unprecedented Thermal Stability of Inherently Metastable Titanium Aluminum Nitride by Point Defect Engineering. Mater. Res. Lett. 2017, 5, 158–169. [Google Scholar] [CrossRef] [Green Version]
- Abdullaev, R.N.; Khairulin, R.A.; Kozlovskii, Y.M.; Agazhanov, A.S.; Stankus, S.V. Density of Magnesium and Magnesium-Lithium Alloys in Solid and Liquid States. Trans. Nonferrous Met. Soc. China 2019, 29, 507–514. [Google Scholar] [CrossRef]
- Gaasior, W.; Moser, Z.; Pstruś, J. Densities of Solid Aluminum-Magnesium (Al-Mg) Alloys. J. Phase Equilibria 2000, 21, 167–171. [Google Scholar] [CrossRef]
- Brennan, S.; Bermudez, K.; Kulkarni, N.S.; Sohn, Y. Interdiffusion in the Mg-Al System and Intrinsic Diffusion in β-Mg2Al3. Metall. Mater. Trans. A 2012, 43, 4043–4052. [Google Scholar] [CrossRef]
- Nissen, D.A. The Low-Temperature Oxidation of Calcium by Water Vapor. Oxid. Met. 1977, 11, 241–261. [Google Scholar] [CrossRef]
- Higgs, D.J.; Young, M.J.; Bertrand, J.A.; George, S.M. Oxidation Kinetics of Calcium Films by Water Vapor and Their Effect on Water Vapor Transmission Rate Measurements. J. Phys. Chem. C 2014, 118, 29322–29332. [Google Scholar] [CrossRef]
- Leleu, S.; Rives, B.; Bour, J.; Causse, N.; Pébère, N. On the Stability of the Oxides Film Formed on a Magnesium Alloy Containing Rare-Earth Elements. Electrochim. Acta 2018, 290, 586–594. [Google Scholar] [CrossRef]
- Kurth, M.; Graat, P.C.J.; Mittemeijer, E.J. The Oxidation Kinetics of Magnesium at Low Temperatures and Low Oxygen Partial Pressures. Thin Solid Film. 2006, 500, 61–69. [Google Scholar] [CrossRef]
- Hasani, S.; Panjepour, M.; Shamanian, M. The Oxidation Mechanism of Pure Aluminum Powder Particles. Oxid. Met. 2012, 78, 179–195. [Google Scholar] [CrossRef]
- Hart, R.K. The Oxidation of Aluminium in Dry and Humid Oxygen Atmospheres. Proc. R. Soc. Lond. 1956, 236, 68–88. [Google Scholar]
- Xu, C.; Gao, W. Pilling-Bedworth Ratio for Oxidation of Alloys. Mater. Res. Innov. 2000, 3, 231–235. [Google Scholar] [CrossRef]
- Brundle, R.; Evans, C.; Wilson, S. Encyclopedia of Materials Characterization: Surfaces, Interfaces, Thin Films; Butterworth-Heinemann: Oxford, UK, 1992; ISBN 9781626239777. [Google Scholar]
- Keuter, P.; Aghda, S.K.; Music, D.; Kümmerl, P.; Schneider, J.M. Synthesis of Intermetallic (Mg1-x,Alx)2Ca by Combinatorial Sputtering. Materials 2019, 12, 3026. [Google Scholar] [CrossRef] [Green Version]
- Tsujioka, T.; Matsumoto, S. Nucleation, Absorption, or Desorption of Metal-Vapor Atoms on Amorphous Photochromic Diarylethene Films Having a Low Glass Transition Temperature. J. Mater. Chem. C 2018, 6, 9786–9793. [Google Scholar] [CrossRef]
- Hans, M.; Tran, T.T.; Aðalsteinsson, S.M.; Moldarev, D.; Moro, M.V.; Wolff, M.; Primetzhofer, D. Photochromic Mechanism and Dual-Phase Formation in Oxygen-Containing Rare-Earth Hydride Thin Films. Adv. Opt. Mater. 2020, 8, 2000822. [Google Scholar] [CrossRef]
- Hans Leo Lukas, N.L.; Materials Science International Team. The Assessed Al-Mg Phase Diagram [1998Lia, 1982Mur]: Datasheet from MSI Eureka in SpringerMaterials. Available online: Https://Materials.Springer.Com/Msi/Phase-Diagram/Docs/Sm_msi_r_20_010921_01_full_LnkDia0 (accessed on 6 October 2022).
- Sanders, J.V. Structure of Evaporated Metal Films. In Chemisorption and Reactions on Metallic Films; Elsevier: Amsterdam, The Netherlands, 1971; pp. 1–38. [Google Scholar]
- Barna, P.B.; Radnóczi, G. Structure Formation during Deposition of Polycrystalline Metallic Thin Films. In Metallic Films for Electronic, Optical and Magnetic Applications; Elsevier: Amsterdam, The Netherlands, 2014; pp. 67–120. ISBN 9780857090577. [Google Scholar]
- Dulmaa, A.; Cougnon, F.G.; Dedoncker, R.; Depla, D. On the Grain Size-Thickness Correlation for Thin Films. Acta Mater. 2021, 212, 116896. [Google Scholar] [CrossRef]
Film | Substrate Temperature (°C) | Base Pressure (10−6 Pa) | DC Target Power (W) | Al-Capping |
---|---|---|---|---|
Mg | RT | 4.0 | 50 | × |
100 | 6.1 | 50 | × | |
100 | 7.0 | 50 | ✓ | |
200 | 4.5 | 50 | × | |
Al | RT | 4.5 | 200 | × |
100 | 4.0 | 200 | × | |
100 | 8.2 | 200 | × | |
200 | 5.5 | 200 | × | |
300 | 8.0 | 200 | × | |
Ca | 100 | 5.0 | 65 | ✓ |
100 | 6.5 | 100 | × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliramaji, S.; Keuter, P.; Neuß, D.; Hans, M.; Primetzhofer, D.; Depla, D.; Schneider, J.M. Effect of Growth Temperature and Atmosphere Exposure Time on Impurity Incorporation in Sputtered Mg, Al, and Ca Thin Films. Materials 2023, 16, 414. https://doi.org/10.3390/ma16010414
Aliramaji S, Keuter P, Neuß D, Hans M, Primetzhofer D, Depla D, Schneider JM. Effect of Growth Temperature and Atmosphere Exposure Time on Impurity Incorporation in Sputtered Mg, Al, and Ca Thin Films. Materials. 2023; 16(1):414. https://doi.org/10.3390/ma16010414
Chicago/Turabian StyleAliramaji, Shamsa, Philipp Keuter, Deborah Neuß, Marcus Hans, Daniel Primetzhofer, Diederik Depla, and Jochen M. Schneider. 2023. "Effect of Growth Temperature and Atmosphere Exposure Time on Impurity Incorporation in Sputtered Mg, Al, and Ca Thin Films" Materials 16, no. 1: 414. https://doi.org/10.3390/ma16010414
APA StyleAliramaji, S., Keuter, P., Neuß, D., Hans, M., Primetzhofer, D., Depla, D., & Schneider, J. M. (2023). Effect of Growth Temperature and Atmosphere Exposure Time on Impurity Incorporation in Sputtered Mg, Al, and Ca Thin Films. Materials, 16(1), 414. https://doi.org/10.3390/ma16010414