Experimental and Numerical Investigation into the Effect of Water Uptake on the Capacitance of an Organic Coating
Abstract
:1. Introduction
- An overview of sample preparation and the experimental approach for aging coatings and obtaining EIS data from the aged coatings.
- Equivalent circuit analyses of the EIS data.
- Development and assessment of numerical diffusion models for water uptake by the coating.
- Implementation of a model for the change in polymer dielectric properties in response to water uptake.
2. Materials and Methods
2.1. Sample Preparation
- Immersion in 0.01 M NaCl at or
- Immersion in 3.2 M NaCl at
- Immersion in saturated NaCl at or
2.2. EIS Measurements
3. Results
3.1. EIS Data
3.2. EIS Analysis
4. Discussion
4.1. Development of Governing Equations for Polymer Saturation
4.2. Water Sorption Models
4.2.1. Constant Diffusivity Models
4.2.2. Varying Diffusivity as a Function of Depth and Polymer Type
4.2.3. Glass-to-Gel Transition Model
4.2.4. Polymer Aging Model
4.3. Estimating Capacitance from Changes in Dielectric Properties
4.4. Predicting Coating Capacitance from the Polymer Aging and Brasher-Mixing Model
- Assign the diffusion coefficient for water sorption in each polymer layer using the constant values provided in the polymer aging entry in Table 4 or from (17), depending on the saturation level. The change in diffusion coefficients across the polymer layer interface was calculated using (15).
- Determine the saturation in both polymer layers by numerical solution of the Crank-Nicolson discretization of the diffusion equation given in (14), subject to the initial condition given in (5), the boundary condition given in (6), and the continuity condition given in (13).
- Calculate the coating capacitance from (19).
- Immersion in 0.01 M NaCl at or
- Immersion in 3.2 M NaCl at
- Immersion in saturated NaCl at or
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmad, Z. Principles of Corrosion Engineering and Corrosion Control; Elsevier: Burlington, MA, USA, 2006. [Google Scholar] [CrossRef]
- Safavi, M.S.; Fathi, M.; Ahadzadeh, I. Feasible strategies for promoting the mechano-corrosion performance of Ni-Co based coatings: Which one is better? Surf. Coat. Technol. 2021, 420, 127337. [Google Scholar] [CrossRef]
- Anwar, S.; Zhang, Y.; Khan, F. Electrochemical behaviour and analysis of Zn and Zn–Ni alloy anti-corrosive coatings deposited from citrate baths. RSC Adv. 2018, 8, 28861–28873. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Frankel, G. Protection Mechanism of Al-Rich Epoxy Primer on Aluminum Alloy 2024-T3. Corrosion 2017, 73, 1192–1195. [Google Scholar] [CrossRef] [PubMed]
- Lyon, S.; Bingham, R.; Mills, D. Advances in corrosion protection by organic coatings: What we know and what we would like to know. Prog. Org. Coat. 2017, 102, 2–7. [Google Scholar] [CrossRef]
- Guseva, O.; Brunner, S.; Richner, P. Service life prediction for aircraft coatings. Polym. Degrad. Stab. 2003, 82, 1–13. [Google Scholar] [CrossRef]
- Bacon, R.C.; Smith, J.J.; Rugg, F.M. Electrolytic Resistance in Evaluating Protective Merit of Coatings on Metals. Ind. Eng. Chem. 1948, 40, 161–167. [Google Scholar] [CrossRef]
- Loveday, D.; Peterson, P.; Rodgers, B. Evaluation of Organic Coatings with Electrochemical Impedance Spectroscopy. Part 3: Protocols for Testing Coatings with EIS. JCT Coatingstech 2005, 2, 22–27. [Google Scholar]
- Taylor, S. Assessing the moisture barrier properties of polymeric coatings using electrical and electrochemical methods. IEEE Trans. Electr. Insul. 1989, 24, 787–806. [Google Scholar] [CrossRef]
- Bierwagen, G.; Li, J.; He, L.; Tallman, D. Fundamentals of the Measurement of Corrosion Protection and the Prediction of Its Lifetime in Organic Coatings. In ACS Symposium Series; ACS Publications: Washington, DC, USA, 2002; Volume 805. [Google Scholar] [CrossRef]
- Bierwagen, G.; Tallman, D.; Li, J.; He, L.; Jeffcoate, C. EIS studies of coated metals in accelerated exposure. Prog. Org. Coat. 2003, 46, 149–158. [Google Scholar] [CrossRef]
- Bierwagen, G.P. Reflections on corrosion control by organic coatings. Prog. Org. Coat. 1996, 28, 43–48. [Google Scholar] [CrossRef]
- Manoli, Z.; Pecko, D.; Van Assche, G.; Stiens, J.; Pourkazemi, A.; Terryn, H. Transport of Electrolyte in Organic Coatings on Metal. In Paint and Coatings Industry; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Morsch, S.; Lyon, S.; Greensmith, P.; Smith, S.D.; Gibbon, S.R. Mapping water uptake in organic coatings using AFM-IR. Faraday Discuss. 2015, 180, 527–542. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yu, Y.; Wu, Q.; Zhan, G.; Li, S. Effect of chemical structure on the water sorption of amine-cured epoxy resins. Corros. Sci. 2009, 51, 3000–3006. [Google Scholar] [CrossRef]
- Boubakri, A.; Haddar, N.; Elleuch, K.; Bienvenu, Y. Impact of aging conditions on mechanical properties of thermoplastic polyurethane. Mater. Des. 2010, 31, 4194–4201. [Google Scholar] [CrossRef]
- Huacuja-Sánchez, J.; Müller, K.; Possart, W. Water diffusion in a crosslinked polyether-based polyurethane adhesive. Int. J. Adhes. Adhes. 2016, 66, 167–175. [Google Scholar] [CrossRef]
- MIL-DTL-81706B; Chemical Conversion Materials for Coating Aluminum and Aluminum Alloys. United States Department of Defense: Washington, DC, USA, 25 October 2004.
- Murray, J.N. Electrochemical test methods for evaluating organic coatings on metals: An update. Part I. Introduction and generalities regarding electrochemical testing of organic coatings. Prog. Org. Coat. 1997, 30, 225–233. [Google Scholar] [CrossRef]
- Duval, S.; Camberlin, Y.; Glotin, M.; Keddam, M.; Ropital, F.; Takenouti, H. Characterisation of organic coatings in sour media and influence of polymer structure on corrosion performance. Prog. Org. Coat. 2000, 39, 15–22. [Google Scholar] [CrossRef]
- Kendig, M.; Jeanjacquet, S.; Brown, R.; Thomas, F. Rapid electrochemical assessment of paint. J. Coat. Technol. 1996, 68, 39–47. [Google Scholar]
- Schalenbach, M.; Durmus, Y.E.; Tempel, H.; Kungl, H.; Eichel, R.-A. Double layer capacitances analysed with impedance spectroscopy and cyclic voltammetry: Validity and limits of the constant phase element parameterization. Phys. Chem. Chem. Phys. 2021, 23, 21097–21105. [Google Scholar] [CrossRef]
- Kim, Y. Refined Simplex Method for Data Fitting. Astron. Data Anal. Softw. Syst. VI 1997, 125, 206. [Google Scholar]
- Qingchu, Z.; Naixin, X.; Shengtai, S. The analysis of impedance data by means of a random simplex method. Corros. Sci. 1991, 32, 1143–1153. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Funke, K.; Banhatti, R.D.; Brückner, S.; Cramer, C.; Krieger, C.; Mandanici, A.; Martiny, C.; Ross, I. Ionic motion in materials with disordered structures: Conductivity spectra and the concept of mismatch and relaxation. Phys. Chem. Chem. Phys. 2002, 4, 3155–3167. [Google Scholar] [CrossRef]
- Wind, M.; Lenderink, H. A capacitance study of pseudo-fickian diffusion in glassy polymer coatings. Prog. Org. Coat. 1996, 28, 239–250. [Google Scholar] [CrossRef]
- Brasher, D.M.; Nurse, T.J. Electrical measurements of immersed paint coatings on metal. II. Effect of osmotic pressure and ionic concentration of solution on paint breakdown. J. Appl. Chem. 2007, 9, 96–106. [Google Scholar] [CrossRef]
- Yang, C.; Xing, X.; Li, Z.; Zhang, S. A Comprehensive Review on Water Diffusion in Polymers Focusing on the Polymer–Metal Interface Combination. Polymers 2020, 12, 138. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion; Clarendon Press: Oxford, UK, 1975. [Google Scholar]
- Wittchen, S.; Kahl, H.; Waltschew, D.; Shahzad, I.; Beiner, M.; Cepus, V. Diffusion coefficients of polyurethane coatings by swelling experiments using dielectric spectroscopy. J. Appl. Polym. Sci. 2020, 137, 49174. [Google Scholar] [CrossRef]
- Lutz, B.; Kindersberger, J. Influence of absorbed water on volume resistivity of epoxy resin insulators. In Proceedings of the 2010 IEEE International Conference on Solid Dielectrics, ICSD 2010, Potsdam, Germany, 4–9 July 2010. [Google Scholar] [CrossRef]
- Crank, J.; Nicolson, P. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Math. Proc. Camb. Philos. Soc. 1947, 43, 50–67. [Google Scholar] [CrossRef]
- Peterlin, A. Diffusion in a network with discontinuous swelling. J. Polym. Sci. Part B Polym. Lett. 1965, 3, 1083–1087. [Google Scholar] [CrossRef]
- Peterlin, A. Diffusion with discontinuous swelling III. Type II diffusion as a particular solution of conventional diffusion equation. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 1977, 81, 243. [Google Scholar] [CrossRef]
- Hoseinpoor, M.; Prošek, T.; Babusiaux, L.; Mallégol, J. Simplified approach to assess water uptake in protective organic coatings by parallel plate capacitor method. Mater. Today Commun. 2021, 26, 101858. [Google Scholar] [CrossRef]
- Crank, J. A theoretical investigation of the influence of molecular relaxation and internal stress on diffusion in polymers. J. Polym. Sci. 1953, 11, 151–168. [Google Scholar] [CrossRef]
- Wu, J.C.; Peppas, N.A. Numerical simulation of anomalous penetrant diffusion in polymers. J. Appl. Polym. Sci. 1993, 49, 1845–1856. [Google Scholar] [CrossRef]
- Possart, W.; Zimmer, B. Water in polyurethane networks: Physical and chemical ageing effects and mechanical parameters. Materials 2023, 16, 3094. [Google Scholar] [CrossRef]
- Burnham, A.K. Use and misuse of logistic equations for modeling chemical kinetics. J. Therm. Anal. Calorim. 2017, 127, 1107–1116. [Google Scholar] [CrossRef]
- Barbour, J.C.; Copeland, R.G.; Dunn, R.G.; Missert, N.; Montes, L.P.; Son, K.A.; Sullivan, J.P. The Electrical Properties of Native and Deposited Thin Aluminum Oxide Layers on Aluminum: Hydration Effects. In Proceedings of the Electrochemical Society Meeting, Boston MA, USA, 1–6 November 1998. [Google Scholar]
- Zhao, X.-Y.; Liu, H.-J. Review of polymer materials with low dielectric constant. Polym. Int. 2010, 59, 597–606. [Google Scholar] [CrossRef]
- Lorenzini, R.; Kline, W.; Wang, C.; Ramprasad, R.; Sotzing, G. The rational design of polyurea & polyurethane dielectric materials. Polymer 2013, 54, 3529–3533. [Google Scholar] [CrossRef]
- Brasher, D.M.; Kingsbury, A.H. Electrical measurements in the study of immersed paint coatings on metal. I. Comparison between capacitance and gravimetric methods of estimating water-uptake. J. Appl. Chem. 1954, 4, 62–72. [Google Scholar] [CrossRef]
- Castela, A.; Simoes, A. An impedance model for the estimation of water absorption in organic coatings. Part I: A linear dielectric mixture equation. Corros. Sci. 2003, 45, 1631–1646. [Google Scholar] [CrossRef]
- Posner, R.; Ozcan, O.; Grundmeier, G. Water and Ions at Polymer/Metal Interfaces. In Design of Adhesive Joints Under Humid Conditions; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
n | |||
---|---|---|---|
4 | 76 | 0.895 |
Time (h) | m | |||
---|---|---|---|---|
0 | 22.6 | 0.946 | 0.09 | |
168 | 6.13 | 0.914 | 0.14 | |
336 | 5.55 | 0.912 | 0.14 | |
504 | 5.26 | 0.909 | 0.15 | |
840 | 3.07 | 0.898 | 0.18 | |
1008 | 2.63 | 0.893 | 0.20 | |
1176 | 2.77 | 0.896 | 0.19 | |
1344 | 2.63 | 0.894 | 0.20 | |
1512 | 2.34 | 0.891 | 0.20 | |
1680 | 2.04 | 0.886 | 0.21 | |
3192 | 1.31 | 0.872 | 0.25 |
5 | 0.01 | |||
5 | Saturated | |||
25 | 3.20 | |||
60 | 0.01 | |||
60 | Saturated |
Model | Summary | |
---|---|---|
Glass-to-gel transition model | D varies as a function of position in the coating and composition. Glass-to-gel transition of the polymer. | |
Polymer aging model | D varies as a function of position and time. Rapid uptake of water into the polymer followed by a slow polymer relaxation. | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Policastro, S.A.; Anderson, R.M.; Hangarter, C.M.; Arcari, A.; Iezzi, E.B. Experimental and Numerical Investigation into the Effect of Water Uptake on the Capacitance of an Organic Coating. Materials 2023, 16, 3623. https://doi.org/10.3390/ma16103623
Policastro SA, Anderson RM, Hangarter CM, Arcari A, Iezzi EB. Experimental and Numerical Investigation into the Effect of Water Uptake on the Capacitance of an Organic Coating. Materials. 2023; 16(10):3623. https://doi.org/10.3390/ma16103623
Chicago/Turabian StylePolicastro, Steven A., Rachel M. Anderson, Carlos M. Hangarter, Attilio Arcari, and Erick B. Iezzi. 2023. "Experimental and Numerical Investigation into the Effect of Water Uptake on the Capacitance of an Organic Coating" Materials 16, no. 10: 3623. https://doi.org/10.3390/ma16103623
APA StylePolicastro, S. A., Anderson, R. M., Hangarter, C. M., Arcari, A., & Iezzi, E. B. (2023). Experimental and Numerical Investigation into the Effect of Water Uptake on the Capacitance of an Organic Coating. Materials, 16(10), 3623. https://doi.org/10.3390/ma16103623