Advances in Two-Dimensional Magnetic Semiconductors via Substitutional Doping of Transition Metal Dichalcogenides
Abstract
1. Introduction
2. Effects of Magnetic Doping in 2D TMDs
3. Synthesis via Chemical Vapor Deposition (CVD)
3.1. LPCVD Growth and Doping
3.1.1. Solid Source-Based Growth and Doping of TMDs
3.1.2. Liquid-Assisted Growth and Doping of TMDs
3.2. MOCVD Growth and Doping
Material Type | Dopant | Synthesis Methods | Size | Thickness | Doping Concentrations | Semiconductor Type after Doping | Ref |
---|---|---|---|---|---|---|---|
MoS2 | Co, Cr | Solid source CVD | ~20 um | monolayer | Co 1% Cr 0.3% | p-type | [65] |
MoS2 | Fe | Solid source CVD | ~20 um | monolayer | 0.3~0.5% | - | [47] |
MoS2 | Fe | Solid source CVD | ~30 um | monolayer | 0.40% | - | [34] |
WSe2 | V | Liquid-phase assistant CVD | >50 um | monolayer | 0.5–10% | p-type | [57] |
Td-Wte2 | Cr | Two-step Te flux CVD | ~1 um | bulk | 2% | - | [54] |
MoS2 | Mn | Solid source CVD | ~200 nm | monolayer | 2% | - | [21] |
WS2 | V | Liquid-phase assistant CVD | - | monolayer | 0.4–12% | p-type | [49] |
MoSe2 | Fe | Liquid-phase assistant CVD | ~40 um | monolayer | 0.93–6.1% | n-type | [58] |
MoTe2 | Cr | Solid source CVD | >1 um | 2H bulk | 2.1–4.3% | p-type | [66] |
MoS2 | Re | Solid source CVD | ~15 um | monolayer | 1% | n-type | [22] |
MoS2 | Nb | MOCVD | Wafer-scale | monolayer | 5% | - | [60] |
Wse2 | V | MOCVD | - | monolayer to multilayer | 0.44% | p-type | [61] |
Wse2 | Re | MOCVD | 450–500 nm | monolayer | 0.5–1.1% | n-type | [62] |
4. Optical, Magnetic, and Other Properties
4.1. Optical Properties
4.2. Magnetic Properties
Material | Dopant Concentration | Saturation Magnetization | Coercivity | Temperature | Reference |
---|---|---|---|---|---|
Fe-doped SnS2 | 2.10% | 3.49 × 10−3 emug−1 | 400 Oe | 300K | [20] |
Co-Cr-doped MoS2 | 1% Co, 0.3% Cr | 0.4 emu cm−3 | 100 Oe | 300K | [65] |
V-doped MoTe2 | 0.30% | 0.6 μemu cm−2 | - | 300K | [17] |
Co- and Nb-doped WSe2 | 4% | 60.62 emu g−1 | 1.2 k Oe | 10K | [48] |
Cr-doped Td-WTe2 | 1% | 4.20 emu g–1 | - | 3K | [54] |
V-doped WS2 | 2% | 2.85 × 10−5 emu cm−2 | 180 Oe | 50K | [49] |
Mn-doped MoSe2 | 6.10% | 2 × 10−5 emu g−1 | - | 300K | [58] |
Cr-doped 2H-MoTe2 | 2.50% | 4.78 emu g−1 | 6322 Oe | 3K | [66] |
V-doped MoS2 | 5% | 0.067 emu g−1 | 1870 Oe | 10K | [74] |
4.3. Other Properties
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Burch, K.S.; Mandrus, D.; Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Li, L.; Li, Z.; Ji, H.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.; Wang, Y.; et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Dietl, T.; Bonanni, A.; Ohno, H. Families of magnetic semiconductors—An overview. J. Semicond. 2019, 40, 080301. [Google Scholar] [CrossRef][Green Version]
- Kriegner, D.; Výborný, K.; Olejník, K.; Reichlová, H.; Novák, V.; Marti, X.; Gazquez, J.; Saidl, V.; Němec, P.; Volobuev, V.V.; et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 2016, 7, 11623. [Google Scholar] [CrossRef][Green Version]
- Mustaqima, M.; Liu, C. ZnO-based nanostructures for diluted magnetic semiconductor. Turk. J. Phys. 2014, 38, 429–441. [Google Scholar] [CrossRef]
- Puthirath Balan, A.; Radhakrishnan, S.; Neupane, R.; Yazdi, S.; Deng, L.; de los Reyes, C.; Apte, A.; Puthirath, A.B.; Rao, B.M.; Paulose, M.; et al. Magnetic properties and photocatalytic applications of 2D sheets of nonlayered manganese telluride by liquid exfoliation. ACS Appl. Nano Mater. 2018, 1, 6427–6434. [Google Scholar] [CrossRef]
- Li, H.; Li, C.; Tao, B.; Gu, S.; Xie, Y.; Wu, H.; Zhang, G.; Wang, G.; Zhang, W.; Chang, H. Two-Dimensional Metal Telluride Atomic Crystals: Preparation, Physical Properties, and Applications. Adv. Funct. Mater. 2021, 31, 2010901. [Google Scholar] [CrossRef]
- Tiwari, S.; de Put, M.L.; Sorée, B.; Vandenberghe, W.G. Magnetic order and critical temperature of substitutionally doped transition metal dichalcogenide monolayers. npj 2D Mater. Appl. 2021, 5, 54. [Google Scholar] [CrossRef]
- Fan, X.-L.; An, Y.-R.; Guo, W.-J. Ferromagnetism in transitional metal-doped MoS2 monolayer. Nanoscale Res. Lett. 2016, 11, 154. [Google Scholar] [CrossRef][Green Version]
- Zhao, X.; Chen, P.; Wang, T. Controlled electronic and magnetic properties of WSe2 monolayers by doping transition-metal atoms. Superlattices Microstruct. 2016, 100, 252–257. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Zhu, Z.Y.; Mi, W.B.; Guo, Z.B.; Schwingenschlögl, U. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 87, 2–5. [Google Scholar] [CrossRef][Green Version]
- Ramasubramaniam, A.; Naveh, D. Mn-doped monolayer MoS2: An atomically thin dilute magnetic semiconductor. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 87, 1–7. [Google Scholar] [CrossRef]
- Wu, C.-W.; Yao, D.-X. Robust p-orbital half-metallicity and high Curie-temperature in the hole-doped anisotropic TcX2 (X = S, Se) nanosheets. J. Magn. Magn. Mater. 2019, 478, 68–76. [Google Scholar] [CrossRef]
- Kan, M.; Adhikari, S.; Sun, Q. Ferromagnetism in mnx 2 (x = s, se) monolayers. Phys. Chem. Chem. Phys. 2014, 16, 4990–4994. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Cao, L.; Li, L.; Duan, J.; Liao, X.; Long, F.; Zhou, J.; Xiao, Y.; Zeng, Y.-J.; Zhou, S. Two-dimensional magneto-photoconductivity in non-van der Waals manganese selenide. Mater. Horiz. 2021, 8, 1286–1296. [Google Scholar]
- Coelho, P.M.; Komsa, H.-P.; Lasek, K.; Kalappattil, V.; Karthikeyan, J.; Phan, M.-H.; Krasheninnikov, A.V.; Batzill, M. Room-Temperature Ferromagnetism in MoTe2 by Post-Growth Incorporation of Vanadium Impurities. Adv. Electron. Mater. 2019, 5, 1900044. [Google Scholar] [CrossRef]
- Wu, M.; Yao, X.; Hao, Y.; Dong, H.; Cheng, Y.; Liu, H.; Lu, F.; Wang, W.; Cho, K.; Wang, W.-H. Electronic structures, magnetic properties and band alignments of 3d transition metal atoms doped monolayer MoS2. Phys. Lett. A 2018, 382, 111–115. [Google Scholar]
- Zhao, X.; Xia, C.; Wang, T.; Dai, X. Effect of structural defects on electronic and magnetic properties of pristine and Mn-doped MoS2 monolayer. Solid State Commun. 2015, 220, 31–35. [Google Scholar] [CrossRef]
- Li, B.B.; Xing, T.; Zhong, M.; Huang, L.; Lei, N.; Zhang, J.J.J.; Li, J.J.J.; Wei, Z.; Fu, S.; Kang, K.; et al. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat. Commun. 2017, 8, 1958. [Google Scholar] [CrossRef][Green Version]
- Zhang, K.; Feng, S.; Wang, J.; Azcatl, A.; Lu, N.; Addou, R.; Wang, N.; Zhou, C.; Lerach, J.; Bojan, V.; et al. Manganese Doping of Monolayer MoS2: The Substrate Is Critical. Nano Lett. 2015, 15, 6586–6591. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Bersch, B.M.; Joshi, J.; Addou, R.; Cormier, C.R.; Zhang, C.; Xu, K.; Briggs, N.C.; Wang, K.; Subramanian, S.; et al. Tuning the Electronic and Photonic Properties of Monolayer MoS2 via In Situ Rhenium Substitutional Doping. Adv. Funct. Mater. 2018, 28, 1–7. [Google Scholar] [CrossRef]
- Fang, J.; Song, H.; Li, B.; Zhou, Z.; Yang, J.; Lin, B.; Liao, Z.; Wei, Z. Large unsaturated magnetoresistance of 2D magnetic semiconductor Fe-SnS2 homojunction. J. Semicond. 2022, 43, 92501. [Google Scholar] [CrossRef]
- Xing, S.; Zhou, J.; Zhang, X.; Elliott, S.; Sun, Z. Theory, properties and engineering of 2D magnetic materials. Prog. Mater. Sci. 2022, 132, 101036. [Google Scholar] [CrossRef]
- Li, X.; Lu, J.-T.; Zhang, J.; You, L.; Su, Y.; Tsymbal, E.Y. Spin-dependent transport in van der Waals magnetic tunnel junctions with Fe3GeTe2 electrodes. Nano Lett. 2019, 19, 5133–5139. [Google Scholar] [CrossRef][Green Version]
- Zou, R.; Zhan, F.; Zheng, B.; Wu, X.; Fan, J.; Wang, R. Intrinsic quantum anomalous Hall phase induced by proximity in the van der Waals heterostructure germanene/Cr2 Ge2 Te6. Phys. Rev. B 2020, 101, 161108. [Google Scholar] [CrossRef]
- Song, T.; Cai, X.; Tu, M.W.-Y.; Zhang, X.; Huang, B.; Wilson, N.P.; Seyler, K.L.; Zhu, L.; Taniguchi, T.; Watanabe, K.; et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 2018, 360, 1214–1218. [Google Scholar] [CrossRef][Green Version]
- Wang, J.; Sun, F.; Yang, S.; Li, Y.; Zhao, C.; Xu, M.; Zhang, Y.; Zeng, H. Robust ferromagnetism in Mn-doped MoS2 nanostructures. Appl. Phys. Lett. 2016, 109, 1–6. [Google Scholar] [CrossRef]
- Fang, Q.; Zhao, X.; Huang, Y.; Xu, K.; Min, T.; Chu, P.K.; Ma, F. Structural stability and magnetic-exchange coupling in Mn-doped monolayer/bilayer MoS2. Phys. Chem. Chem. Phys. 2018, 20, 553–561. [Google Scholar] [CrossRef]
- Wang, S.; Robertson, A.; Warner, J.H. Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides. Chem. Soc. Rev. 2018, 47, 6764–6794. [Google Scholar] [CrossRef]
- Mishra, R.; Zhou, W.; Pennycook, S.J.; Pantelides, S.T.; Idrobo, J.-C.; Cheng, Y.C.; Zhu, Z.Y.; Mi, W.B.; Guo, Z.B.; Schwingenschlögl, U. Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 88, 144409. [Google Scholar] [CrossRef]
- Singh, A.; Price, C.C.; Shenoy, V.B. Magnetic Order, Electrical Doping, and Charge-State Coupling at Amphoteric Defect Sites in Mn-Doped 2D Semiconductors. ACS Nano 2022, 16, 9452–9460. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Li, X.; Chen, X.; Hu, K. Strain tuning of magnetism in Mn doped MoS2 monolayer. J. Phys. Condens. Matter 2014, 26, 256003. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhao, X.; Deng, L.; Shi, Z.; Liu, S.; Wei, Q.; Zhang, L.; Cheng, Y.; Zhang, L.; Lu, H.; et al. Enhanced Valley Zeeman Splitting in Fe-Doped Monolayer MoS2. ACS Nano 2020, 14, 4636–4645. [Google Scholar] [CrossRef][Green Version]
- Lv, R.; Robinson, J.A.; Schaak, R.E.; Sun, D.; Sun, Y.; Mallouk, T.E.; Terrones, M. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single-and few-layer nanosheets. Acc. Chem. Res. 2015, 48, 56–64. [Google Scholar] [CrossRef]
- Lin, Y.-C.C.; Torsi, R.; Geohegan, D.B.; Robinson, J.A.; Xiao, K. Controllable Thin-Film Approaches for Doping and Alloying Transition Metal Dichalcogenides Monolayers. Adv. Sci. 2021, 8, 1–26. [Google Scholar] [CrossRef]
- Xia, B.; Liu, P.; Liu, Y.; Gao, D.; Xue, D.; Ding, J. Re doping induced 2H-1T phase transformation and ferromagnetism in MoS2 nanosheets. Appl. Phys. Lett. 2018, 113, 13101. [Google Scholar] [CrossRef]
- Chen, K.; Deng, J.; Kan, D.; Yan, Y.; Shi, Q.; Huo, W.; Song, M.; Yang, S.; Liu, J.Z. Ferromagnetic and nonmagnetic 1 T′ charge density wave states in transition metal dichalcogenides: Physical mechanisms and charge doping induced reversible transition. Phys. Rev. B 2022, 105, 24414. [Google Scholar] [CrossRef]
- Matsukura, F.; Ohno, H.; Shen, A.; Sugawara, Y. Transport properties and origin of ferromagnetism in (Ga, Mn) As. Phys. Rev. B 1998, 57, R2037. [Google Scholar] [CrossRef]
- Maiti, S.K. Electron transport through honeycomb lattice ribbons with armchair edges. Solid State Commun. 2009, 149, 973–977. [Google Scholar] [CrossRef][Green Version]
- Kuivalainen, P. Spin-Dependent Transport in Heavily Mn-Doped GaAs. Phys. Status Solidi 2001, 227, 449–463. [Google Scholar] [CrossRef]
- Poltavtsev, S.V.; Dzhioev, R.I.; Korenev, V.L.; Akimov, I.A.; Kudlacik, D.; Yakovlev, D.R.; Bayer, M. Steplike spectral distribution of photoelectrons at the percolation threshold in heavily p-doped GaAs. Phys. Rev. B 2020, 102, 14204. [Google Scholar] [CrossRef]
- Kitchen, D.; Richardella, A.; Tang, J.-M.; Flatté, M.E.; Yazdani, A. Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions. Nature 2006, 442, 436–439. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mahadevan, P.; Zunger, A. Ferromagnetism in Mn-doped GaAs due to substitutional-interstitial complexes. Phys. Rev. B 2003, 68, 75202. [Google Scholar] [CrossRef][Green Version]
- Chen, L.; Yang, X.; Yang, F.; Zhao, J.; Misuraca, J.; Xiong, P.; von Molnár, S. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn) As to 200 K via nanostructure engineering. Nano Lett. 2011, 11, 2584–2589. [Google Scholar] [CrossRef]
- Kulatov, E.; Nakayama, H.; Mariette, H.; Ohta, H.; Uspenskii, Y.A. Electronic structure, magnetic ordering, and optical properties of GaN and GaAs doped with Mn. Phys. Rev. B 2002, 66, 45203. [Google Scholar] [CrossRef]
- Fu, S.; Kang, K.; Shayan, K.; Yoshimura, A.; Dadras, S.; Wang, X.; Zhang, L.; Chen, S.; Liu, N.; Jindal, A.; et al. Enabling room temperature ferromagnetism in monolayer MoS2 via in situ iron-doping. Nat. Commun. 2020, 11, 6–13. [Google Scholar] [CrossRef]
- Ahmed, S.; Ding, X.; Murmu, P.P.; Bao, N.; Liu, R.; Kennedy, J.; Wang, L.L.L.; Ding, J.; Wu, T.; Vinu, A.; et al. High Coercivity and Magnetization in WSe2 by Codoping Co and Nb. Small 2020, 16, e1903173. [Google Scholar] [CrossRef]
- Zhang, F.; Zheng, B.; Sebastian, A.; Olson, H.; Liu, M.; Fujisawa, K.; Pham, Y.T.H.; Jimenez, V.O.; Kalappattil, V.; Miao, L.; et al. Monolayer vanadium-doped tungsten disulfide: A room-temperature dilute magnetic semiconductor. arXiv 2020, arXiv:2005.01965. [Google Scholar] [CrossRef]
- Briggs, N.; Subramanian, S.; Lin, Z.; Li, X.; Zhang, X.; Zhang, K.; Xiao, K.; Geohegan, D.; Wallace, R.; Chen, L.-Q.; et al. A roadmap for electronic grade 2D materials. 2D Mater. 2019, 6, 22001. [Google Scholar] [CrossRef]
- Zhou, J.; Lin, J.; Huang, X.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H.; Lei, J.; et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yao, Y.; Sendeku, M.G.; Yin, L.; Zhan, X.; Wang, F.; Wang, Z.; He, J. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 2019, 31, 1901694. [Google Scholar] [CrossRef] [PubMed]
- Hernandez Ruiz, K.; Wang, Z.; Ciprian, M.; Zhu, M.; Tu, R.; Zhang, L.; Luo, W.; Fan, Y.; Jiang, W. Chemical vapor deposition mediated phase engineering for 2D transition metal dichalcogenides: Strategies and applications. Small Sci. 2022, 2, 2100047. [Google Scholar] [CrossRef]
- Yang, L.; Wu, H.; Zhang, L.; Zhang, W.; Li, L.; Kawakami, T.; Sugawara, K.; Sato, T.; Zhang, G.; Gao, P.; et al. Highly Tunable Near-Room Temperature Ferromagnetism in Cr-Doped Layered Td-WTe2. Adv. Funct. Mater. 2021, 31, 202008116. [Google Scholar] [CrossRef]
- Kang, K.; Fu, S.; Shayan, K.; Anthony, Y.; Dadras, S.; Yuzan, X.; Kazunori, F.; Terrones, M.; Zhang, W.; Strauf, S.; et al. The effects of substitutional Fe-doping on magnetism in MoS2 and WS2 monolayers. Nanotechnology 2021, 32, 095708. [Google Scholar] [CrossRef]
- Zhou, W.; Zou, X.; Najmaei, S.; Liu, Z.; Shi, Y.; Kong, J.; Lou, J.; Ajayan, P.M.; Yakobson, B.I.; Idrobo, J.-C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622. [Google Scholar] [CrossRef]
- Yun, S.J.; Duong, D.L.; Ha, D.M.; Singh, K.; Phan, T.L.; Choi, W.; Kim, Y.-M.M.; Lee, Y.H. Ferromagnetic order at room temperature in monolayer WSe2 semiconductor via vanadium dopant. Adv. Sci. 2020, 7, 1903076. [Google Scholar] [CrossRef][Green Version]
- Shen, D.; Zhao, B.; Zhang, Z.; Zhang, H.; Yang, X.; Huang, Z.; Li, B.; Song, R.; Jin, Y.; Wu, R.; et al. Synthesis of Group VIII Magnetic Transition-Metal-Doped Monolayer MoSe2. ACS Nano 2022, 16, 10623–10631. [Google Scholar] [CrossRef]
- Tong, X.; Liu, K.; Zeng, M.; Fu, L. Vapor-phase growth of high-quality wafer-scale two-dimensional materials. InfoMat 2019, 1, 460–478. [Google Scholar] [CrossRef][Green Version]
- Zhang, K.; Deng, D.D.; Zheng, B.; Wang, Y.; Perkins, F.K.; Briggs, N.C.; Crespi, V.H.; Robinson, J.A. Tuning transport and chemical sensitivity via niobium doping of synthetic MoS2. Adv. Mater. Interfaces 2020, 7, 2000856. [Google Scholar] [CrossRef]
- Stolz, S.; Kozhakhmetov, A.; Dong, C.; Gröning, O.; Robinson, J.A.; Schuler, B. Layer-dependent Schottky contact at van der Waals interfaces: V-doped WSe2 on graphene. npj 2D Mater. Appl. 2022, 6, 66. [Google Scholar] [CrossRef]
- Kozhakhmetov, A.; Schuler, B.; Tan, A.M.Z.; Cochrane, K.A.; Nasr, J.R.; El-Sherif, H.; Bansal, A.; Vera, A.; Bojan, V.; Redwing, J.M.; et al. Scalable Substitutional Re-Doping and its Impact on the Optical and Electronic Properties of Tungsten Diselenide. Adv. Mater. 2020, 2005159, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Stringfellow, G.B. Organometallic Vapor-Phase Epitaxy: Theory and Practice; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Xu, X.; Guo, T.; Kim, H.; Hota, M.K.; Alsaadi, R.S.; Lanza, M.; Zhang, X.; Alshareef, H.N. Growth of 2D materials at the wafer scale. Adv. Mater. 2022, 34, 2108258. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Guo, P.; Wang, C.; Tan, H.; Hu, W.; Yan, W.; Ma, C.; Cai, L.; Song, L.; Zhang, W.; et al. Beating the exclusion rule against the coexistence of robust luminescence and ferromagnetism in chalcogenide monolayers. Nat. Commun. 2019, 10, 1584. [Google Scholar] [CrossRef][Green Version]
- Yang, L.; Wu, H.; Zhang, L.; Zhang, G.; Li, H.; Jin, W.; Zhang, W.; Chang, H. Tunable and Robust Near-Room-Temperature Intrinsic Ferromagnetism of a van der Waals Layered Cr-Doped 2H-MoTe2Semiconductor with an Out-of-Plane Anisotropy. ACS Appl. Mater. Interfaces 2021, 13, 31880–31890. [Google Scholar] [CrossRef]
- Wang, Y.; Cong, C.; Yang, W.; Shang, J.; Peimyoo, N.; Chen, Y.; Kang, J.; Wang, J.; Huang, W.; Yu, T. Strain-induced direct--indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 2015, 8, 2562–2572. [Google Scholar] [CrossRef]
- Kang, W.T.; Lee, I.M.; Yun, S.J.; Song, Y.I.; Kim, K.; Kim, D.-H.; Shin, Y.S.; Lee, K.; Heo, J.; Kim, Y.-M.; et al. Direct growth of doping controlled monolayer WSe 2 by selenium-phosphorus substitution. Nanoscale 2018, 10, 11397–11402. [Google Scholar] [CrossRef]
- Sasaki, S.; Kobayashi, Y.; Liu, Z.; Suenaga, K.; Maniwa, Y.; Miyauchi, Y.; Miyata, Y. Growth and optical properties of Nb-doped WS2 monolayers. Appl. Phys. Express 2016, 9, 71201. [Google Scholar] [CrossRef]
- Moody, G.; Kavir Dass, C.; Hao, K.; Chen, C.-H.; Li, L.-J.; Singh, A.; Tran, K.; Clark, G.; Xu, X.; Berghäuser, G.; et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun. 2015, 6, 8315. [Google Scholar] [CrossRef][Green Version]
- Xiao, D.; Yao, W.; Niu, Q. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 2007, 99, 236809. [Google Scholar] [CrossRef][Green Version]
- Mak, K.F.; Xiao, D.; Shan, J. Light--valley interactions in 2D semiconductors. Nat. Photonics 2018, 12, 451–460. [Google Scholar] [CrossRef]
- Kabiraj, A.; Kumar, M.; Mahapatra, S. High-throughput discovery of high Curie point two-dimensional ferromagnetic materials. npj Comput. Mater. 2020, 6, 35. [Google Scholar] [CrossRef][Green Version]
- Ahmed, S.; Ding, X.; Bao, N.; Bian, P.; Zheng, R.; Wang, Y.; Murmu, P.P.; Kennedy, J.V.; Liu, R.; Fan, H.; et al. Inducing High Coercivity in MoS2 Nanosheets by Transition Element Doping. Chem. Mater. 2017, 29, 9066–9074. [Google Scholar] [CrossRef]
- Krishnamoorthy, A.; Dinh, M.A.; Yildiz, B. Hydrogen weakens interlayer bonding in layered transition metal sulfide Fe 1+ x S. J. Mater. Chem. A 2017, 5, 5030–5035. [Google Scholar] [CrossRef][Green Version]
- Sun, X.; Dai, J.; Guo, Y.; Wu, C.; Hu, F.; Zhao, J.; Zeng, X.; Xie, Y. Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution. Nanoscale 2014, 6, 8359–8367. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, G.; Zhang, Y.; Cao, Z.; Wang, Y.; Cao, T.; Wang, C.; Cheng, B.; Zhang, W.; Wan, X.; et al. Tuning electrical conductance in bilayer MoS2 through defect-mediated interlayer chemical bonding. ACS Nano 2020, 14, 10265–10275. [Google Scholar] [CrossRef]
- Cai, Z.; Shen, T.; Zhu, Q.; Feng, S.; Yu, Q.; Liu, J.; Tang, L.; Zhao, Y.; Wang, J.; Liu, B.; et al. Dual-Additive Assisted Chemical Vapor Deposition for the Growth of Mn-Doped 2D MoS2 with Tunable Electronic Properties. Small 2020, 16, 1903181. [Google Scholar] [CrossRef]
- Shi, X.; Posysaev, S.; Huttula, M.; Pankratov, V.; Hoszowska, J.; Dousse, J.-C.; Zeeshan, F.; Niu, Y.; Zakharov, A.; Li, T.; et al. Metallic contact between MoS2 and Ni via Au nanoglue. Small 2018, 14, 1704526. [Google Scholar] [CrossRef][Green Version]
- Yoo, H.; Heo, K.; Ansari, M.H.R.; Cho, S. Recent advances in electrical doping of 2D semiconductor materials: Methods, analyses, and applications. Nanomaterials 2021, 11, 832. [Google Scholar] [CrossRef]
- Voiry, D.; Yang, J.; Chhowalla, M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 2016, 28, 6197–6206. [Google Scholar] [CrossRef]
- Deng, J.; Li, H.; Wang, S.; Ding, D.; Chen, M.; Liu, C.; Tian, Z.; Novoselov, K.S.; Ma, C.; Deng, D.; et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nat. Commun. 2017, 8, 14430. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tu, C.-Y.; Wu, J.M. Localized surface plasmon resonance coupling with piezophototronic effect for enhancing hydrogen evolution reaction with Au@MoS2 nanoflowers. Nano Energy 2021, 87, 106131. [Google Scholar] [CrossRef]
- Tsai, C.; Abild-Pedersen, F.; Nørskov, J.K. Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett. 2014, 14, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Ruqia, B.; Kabiraz, M.K.; Hong, J.W.; Choi, S.-I. Catalyst activation: Surface doping effects of group VI transition metal dichalcogenides towards hydrogen evolution reaction in acidic media. J. Energy Chem. 2022, 72, 217–240. [Google Scholar] [CrossRef]
- Lin, Z.; McCreary, A.; Briggs, N.; Subramanian, S.; Zhang, K.; Sun, Y.; Li, X.; Borys, N.J.; Yuan, H.; Fullerton-Shirey, S.K. 2D materials advances: From large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Mater. 2016, 3, 42001. [Google Scholar] [CrossRef]
- Rhodes, D.; Chae, S.H.; Ribeiro-Palau, R.; Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 2019, 18, 541–549. [Google Scholar] [CrossRef]
- Azadmanjiri, J.; Srivastava, V.K.; Kumar, P.; Sofer, Z.; Min, J.; Gong, J. Graphene-supported 2D transition metal dichalcogenide van der waals heterostructures. Appl. Mater. Today 2020, 19, 100600. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, M.; Yang, E.-H. Advances in Two-Dimensional Magnetic Semiconductors via Substitutional Doping of Transition Metal Dichalcogenides. Materials 2023, 16, 3701. https://doi.org/10.3390/ma16103701
Fang M, Yang E-H. Advances in Two-Dimensional Magnetic Semiconductors via Substitutional Doping of Transition Metal Dichalcogenides. Materials. 2023; 16(10):3701. https://doi.org/10.3390/ma16103701
Chicago/Turabian StyleFang, Mengqi, and Eui-Hyeok Yang. 2023. "Advances in Two-Dimensional Magnetic Semiconductors via Substitutional Doping of Transition Metal Dichalcogenides" Materials 16, no. 10: 3701. https://doi.org/10.3390/ma16103701
APA StyleFang, M., & Yang, E.-H. (2023). Advances in Two-Dimensional Magnetic Semiconductors via Substitutional Doping of Transition Metal Dichalcogenides. Materials, 16(10), 3701. https://doi.org/10.3390/ma16103701