A Novel Two-Dimensional TiClO as a High-Performance Anode Material for Mg-Ion Batteries: A First-Principles Study
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
3.1. Structure and Cleavage Energy of Bulk TiClO
3.2. Structure and Stability of Monolayer TiClO
3.3. Electronic Property of Monolayer TiClO
3.4. Mg Adsorption on Monolayer TiClO
3.5. Mg Diffusion on Monolayer TiClO
3.6. Theoretical Specific Capacity and Open Circuit Voltage
3.7. Mg Adsorption Property on Bilayer TiClO
3.8. Mg Adsorption Property on Trilayer TiClO
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, W.; Yang, Y.; Zhang, G.; Zhang, Y.W. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett. 2015, 15, 1691–1697. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Park, K.S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Goodenough, J.B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2009, 22, 587–603. [Google Scholar] [CrossRef]
- Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Kesler, S.E.; Everson, M.P.; Wallington, T.J. Global Lithium Availability. J. Ind. Ecol. 2011, 15, 760–775. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lv, R.; Tang, W.; Li, G.; Wang, A.; Dong, A.; Liu, X.; Luo, J. Challenges and Opportunities for Multivalent Metal Anodes in Rechargeable Batteries. Adv. Funct. Mater. 2020, 30, 2004187. [Google Scholar] [CrossRef]
- Saha, P.; Datta, M.K.; Velikokhatnyi, O.I.; Manivannan, A.; Alman, D.; Kumta, P.N. Rechargeable magnesium battery: Current status and key challenges for the future. Prog. Mater. Sci. 2014, 66, 1. [Google Scholar] [CrossRef]
- Kim, D.-M.; Jung, S.C.; Ha, S.; Kim, Y.; Park, Y.; Ryu, J.H.; Han, Y.-K.; Lee, K.T. Cointercalation of Mg2+ Ions into Graphite for Magnesium-Ion Batteries. Chem. Mater. 2018, 30, 3199–3203. [Google Scholar] [CrossRef]
- Peng, L.; Zhu, Y.; Chen, D.; Ruoff, R.S.; Yu, G. Two-Dimensional Materials for Beyond-Lithium-Ion Batteries. Adv. Energy Mater. 2016, 6, 1600025. [Google Scholar] [CrossRef]
- Guo, Q.; Zeng, W.; Liu, S.-L.; Li, Y.-Q.; Xu, J.-Y.; Wang, J.-X.; Wang, Y. Recent developments on anode materials for magnesium-ion batteries: A review. Rare Met. 2020, 40, 290–308. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.; Khotkevich, V.; Morozov, S.; Geim, A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.-E.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Fal’ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Vakili-Nezhaad, G.R.; Gujarathi, A.M.; Al Rawahi, N.; Mohammadi, M. Performance of WS2 monolayers as a new family of anode materials for metal-ion (Mg, Al and Ca) batteries. Mater. Chem. Phys. 2019, 230, 114–121. [Google Scholar] [CrossRef]
- Reich, E.S.J.N. Phosphorene excites materials scientists. Nature 2014, 506, 19. [Google Scholar] [CrossRef]
- Han, X.; Liu, C.; Sun, J.; Sendek, A.D.; Yang, W. Density functional theory calculations for evaluation of phosphorene as a potential anode material for magnesium batteries. RSC Adv. 2018, 8, 7196–7204. [Google Scholar] [CrossRef]
- Brent, J.R.; Savjani, N.; Lewis, E.A.; Haigh, S.J.; Lewis, D.J.; O’Brien, P. Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun. (Camb) 2014, 50, 13338–13341. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.; Ji, H.; Jung, Y. Two-Dimensional Transition Metal Dichalcogenide Monolayers as Promising Sodium Ion Battery Anodes. J. Phys. Chem. C 2015, 119, 26374–26380. [Google Scholar] [CrossRef]
- Wu, N.; Lyu, Y.-C.; Xiao, R.-J.; Yu, X.; Yin, Y.-X.; Yang, X.-Q.; Li, H.; Gu, L.; Guo, Y.-G. A highly reversible, low-strain Mg-ion insertion anode material for rechargeable Mg-ion batteries. NPG Asia Mater. 2014, 6, e120. [Google Scholar] [CrossRef]
- Yang, E.; Ji, H.; Kim, J.; Kim, H.; Jung, Y. Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries. Phys. Chem. Chem. Phys. 2015, 17, 5000–5005. [Google Scholar] [CrossRef]
- Subramanian, V.; Karki, A.; Gnanasekar, K.I.; Eddy, F.P.; Rambabu, B. Nanocrystalline TiO2 (anatase) for Li-ion batteries. J. Power Sources 2006, 159, 186–192. [Google Scholar] [CrossRef]
- Yang, Z.; Choi, D.; Kerisit, S.; Rosso, K.M.; Wang, D.; Zhang, J.; Graff, G.; Liu, J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. J. Power Sources 2009, 192, 588–598. [Google Scholar] [CrossRef]
- Chen, L.; Shen, L.; Nie, P.; Zhang, X.; Li, H. Facile hydrothermal synthesis of single crystalline TiOF2 nanocubes and their phase transitions to TiO2 hollow nanocages as anode materials for lithium-ion battery. Electrochim. Acta 2012, 62, 408–415. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, S.; Xie, Y.; Ye, X.; Sun, S. Highly stable TiOF monolayer as anode material for the applications of Li/Na-ion batteries. Appl. Surf. Sci. 2022, 574, 151296. [Google Scholar] [CrossRef]
- Segall, M.; Lindan, P.J.; Probert, M.a.; Pickard, C.J.; Hasnip, P.J.; Clark, S.; Payne, M. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717–2744. [Google Scholar] [CrossRef]
- Hamann, D.R.; Schlüter, M.; Chiang, C. Norm-Conserving Pseudopotentials. Phys. Rev. Lett. 1979, 43, 1494–1497. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Barzilai, J.; Borwein, J.M. Two-point step size gradient methods. IMA J. Numer. Anal. 1988, 8, 141–148. [Google Scholar] [CrossRef]
- SlMitses, G.J.; Kamat, M.P.; Smith, C.V. Strongest Column by the Finite Element Displacement Method. AIAA J. 1973, 11, 1231–1232. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef] [PubMed]
- Henkelman, G.; Uberuaga, B.P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904. [Google Scholar] [CrossRef]
- Seidel, A.; Marianetti, C.A.; Chou, F.C.; Ceder, G.; Lee, P.A. S = 1/2 chains and spin-Peierls transition in TiOCl. Phys. Rev. B 2003, 67, 020405. [Google Scholar] [CrossRef]
- Schäfer, H.; Wartenpfuhl, F.; Weise, E. Über Titanchloride. V. Titan (III)-oxychlorid. Z. Anorg. Allg. Chem. 1958, 295, 268–280. [Google Scholar] [CrossRef]
- Zhao, S.; Li, Z.; Yang, J. Obtaining two-dimensional electron gas in free space without resorting to electron doping: An electride based design. J. Am. Chem. Soc. 2014, 136, 13313–13318. [Google Scholar] [CrossRef]
- Jing, Y.; Ma, Y.; Li, Y.; Heine, T. GeP3: A Small Indirect Band Gap 2D Crystal with High Carrier Mobility and Strong Interlayer Quantum Confinement. Nano Lett. 2017, 17, 1833–1838. [Google Scholar] [CrossRef]
- Lu, N.; Zhuo, Z.; Guo, H.; Wu, P.; Fa, W.; Wu, X.; Zeng, X.C. CaP3: A New Two-Dimensional Functional Material with Desirable Band Gap and Ultrahigh Carrier Mobility. J. Phys. Chem. Lett. 2018, 9, 1728–1733. [Google Scholar] [CrossRef]
- Wu, Y.-Y.; Bo, T.; Zhu, X.; Wang, Z.; Wu, J.; Li, Y.; Wang, B.-T. Two-dimensional tetragonal Ti2BN: A novel potential anode material for Li-ion batteries. Appl. Surf. Sci. 2020, 513, 145821. [Google Scholar] [CrossRef]
- Come, J.; Naguib, M.; Rozier, P.; Barsoum, M.W.; Gogotsi, Y.; Taberna, P.L.; Morcrette, M.; Simon, P. A Non-Aqueous Asymmetric Cell with a Ti2C-Based Two-Dimensional Negative Electrode. J. Electrochem. Soc. 2012, 159, A1368–A1373. [Google Scholar] [CrossRef]
- Mouhat, F.; Coudert, F.-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 2014, 90, 224104. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Li, Y.; Lin, J.; Truhlar, D.G.; Huang, S. MnSb2S4 Monolayer as an Anode Material for Metal-Ion Batteries. Chem. Mater. 2018, 30, 3208–3214. [Google Scholar] [CrossRef]
- Arsentev, M.; Missyul, A.; Petrov, A.V.; Hammouri, M. TiS3 Magnesium Battery Material: Atomic-Scale Study of Maximum Capacity and Structural Behavior. J. Phys. Chem. C 2017, 121, 15509–15515. [Google Scholar] [CrossRef]
- Xiao, C.; Tang, X.; Peng, J.; Ding, Y. Graphene-like BSi as a promising anode material for Li- and Mg-ion batteries: A first principle study. Appl. Surf. Sci. 2021, 563, 150278. [Google Scholar] [CrossRef]
- Shuai, J.; Yoo, H.D.; Liang, Y.; Li, Y.; Yao, Y.; Grabow, L.C. Density functional theory study of Li, Na, and Mg intercalation and diffusion in MoS2with controlled interlayer spacing. Mater. Res. Express 2016, 3, 064001. [Google Scholar] [CrossRef]
- Laidler, K.J. The development of the Arrhenius equation. J. Chem. Educ. 1984, 61, 494. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, G.; Hu, H.; Wu, L.; Wang, Q.; Xin, X.; Li, S.; Lu, P. Graphene-like carbon-nitrogen materials as anode materials for Li-ion and mg-ion batteries. Appl. Surf. Sci. 2019, 487, 1026–1032. [Google Scholar] [CrossRef]
- Xie, Y.; Dall’Agnese, Y.; Naguib, M.; Gogotsi, Y.; Barsoum, M.W.; Zhuang, H.L.; Kent, P.R. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 2014, 8, 9606–9615. [Google Scholar] [CrossRef]
- Wang, Y.; Song, N.; Song, X.; Zhang, T.; Zhang, Q.; Li, M. Metallic VO2 monolayer as an anode material for Li, Na, K, Mg or Ca ion storage: A first-principle study. RSC Adv. 2018, 8, 10848–10854. [Google Scholar] [CrossRef]
- Samad, A.; Shafique, A.; Shin, Y.H. Adsorption and diffusion of mono, di, and trivalent ions on two-dimensional TiS2. Nanotechnology 2017, 28, 175401. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Mao, J.; Zhu, Y.; Luo, C.; Suo, L.; Gao, T.; Han, F.; Liou, S.-C.; Wang, C. Superior Stable Self-Healing SnP3Anode for Sodium-Ion Batteries. Adv. Energy Mater. 2015, 5, 1500174. [Google Scholar] [CrossRef]
Structure of TiClO | Adsorption Site | Adsorption Energy (eV) | Diffusion Barrier (eV) | Eletrons Transfered | Electronic Property after Adsorption |
---|---|---|---|---|---|
monolayer | H1 | 1.22 | 0.41 (path I) | 0.46 (site T3) | metallic |
T1 | 1.13 | 0.68 (path II) | |||
T3 | 1.47 | ||||
bilayer | V | 1.45 | 0.53 (path A) | 0.55 (site T3) | metallic |
H1 | 1.62 | 0.71 (path B) | |||
T3 | 1.76 | ||||
trilayer | H1 | 1.36 | 0.45 (path 1) | ||
T3 | 1.59 | 0.66 (path 2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Liu, C. A Novel Two-Dimensional TiClO as a High-Performance Anode Material for Mg-Ion Batteries: A First-Principles Study. Materials 2023, 16, 3876. https://doi.org/10.3390/ma16103876
Zhang S, Liu C. A Novel Two-Dimensional TiClO as a High-Performance Anode Material for Mg-Ion Batteries: A First-Principles Study. Materials. 2023; 16(10):3876. https://doi.org/10.3390/ma16103876
Chicago/Turabian StyleZhang, Songcheng, and Chunsheng Liu. 2023. "A Novel Two-Dimensional TiClO as a High-Performance Anode Material for Mg-Ion Batteries: A First-Principles Study" Materials 16, no. 10: 3876. https://doi.org/10.3390/ma16103876
APA StyleZhang, S., & Liu, C. (2023). A Novel Two-Dimensional TiClO as a High-Performance Anode Material for Mg-Ion Batteries: A First-Principles Study. Materials, 16(10), 3876. https://doi.org/10.3390/ma16103876