A Review on Sustainable Inks for Printed Electronics: Materials for Conductive, Dielectric and Piezoelectric Sustainable Inks
Abstract
:1. Introduction
- 1.
- Functional material
- 2.
- Solvent
- 3.
- Polymeric resin or binder
- 4.
- Additives
- It is a biobased ink. Most of its compounds are produced from a natural or renewable source. Some examples are materials produced from biomass (produced from agricultural waste), obtained from a biogenic process, or produced using a sustainable route, among others. As with biobased plastics, currently, there is no rule that measures the sustainability of an ink based on its biobased content [15].
- It is a biodegradable ink. Most of its compounds degrade partially or totally in a reasonable period. For polymers, the degradation is measured by the UNE-EN ISO 14855 rule [16], which measures the biodegradation of the polymer in ambient compost, or the UNE-EN ISO 14852 [17], measuring the biodegradability in aqueous media, at 20–25 °C for 6 months.
- Its compounds are not considered critical raw materials or harmful to the environment.
2. Composition of Inks
2.1. Functional Material
2.1.1. Conductive Inks
2.1.2. Dielectric Inks
Material | Dielectric Constant | Frequency | Ref. |
---|---|---|---|
Cellulose | 3.9–7.5 | 103 Hz | [47] |
Keratin | 8 | 3 × 106 Hz | [52] |
Chitosan | 5.5 | 103 Hz | [53] |
Starch | 40–65 | 2.45 × 109 Hz | [54] |
Silk Fibroin | 6.1 | 3 × 105 Hz | [55] |
Poly(glutamic acid) | 130 | 103 Hz | [56] |
Hyaluronic acid | 60 | 9 × 109 Hz | [57] |
Alginate | 18.35 | 106 Hz | [58] |
Dextran | 45–60 | 1010 Hz | [59] |
Collagen | 4.5 | 103 Hz | [60] |
PLA | 2.9 | 103 Hz | [61] |
PVA | 12 | 103 Hz | [47] |
Polycaprolactone | 3 | 109 Hz | [59] |
PDMS | 2.6 | 103 Hz | [47] |
PBS | 17.5 | - | [62] |
Polyamides | 3.5 | 103 Hz | [63] |
Polyethylene glycol (PEG) | 11.6 | 103 Hz | [64] |
Polyurethanes | 6–11 | 103 Hz | [65] |
Polycarbonates | 3.0 | 103 Hz | [47] |
2.1.3. Piezoelectric Inks
2.2. Polymeric Resin or Binder
2.3. Solvent
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, X.; Liu, Y.; Hwang, S.W.; Kang, S.K.; Patnaik, D.; Cortes, J.F.; Rogers, J.A. Biodegradable Materials for Multilayer Transient Printed Circuit Boards. Adv. Mater. 2014, 26, 7371–7377. [Google Scholar] [CrossRef] [PubMed]
- Poulin, A.; Aeby, X.; Siqueira, G.; Nyström, G. Versatile carbon-loaded shellac ink for disposable printed electronics. Sci. Rep. 2021, 11, 23784. [Google Scholar] [CrossRef] [PubMed]
- European Commission, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs. Proposal for A Regulation of The European Parliament and of The Council Establishing A Framework for Ensuring A Secure and Sustainable Supply of Critical Raw Materials and AMENDING Regulations (EU) 168/2013, (EU) 2018/858, 2018/1724 and (EU) 2019/1020; European Commission, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs: Brussels, Belgium, 2023. [Google Scholar]
- Curran, M.A. Biobased Materials. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons: New York, NY, USA, 2010; pp. 1–19. [Google Scholar] [CrossRef]
- Najafi, M.; Zahid, M.; Ceseracciu, L.; Safarpour, M.; Athanassiou, A.; Bayer, I.S. Polylactic acid-graphene emulsion ink based conductive cotton fabrics. J. Mater. Res. Technol. 2022, 18, 5197–5211. [Google Scholar] [CrossRef]
- Atreya, M.; Dikshit, K.; Marinick, G.; Nielson, J.; Bruns, C.; Whiting, G.; Rady, P.M. Poly(lactic acid)-Based Ink for Biodegradable Printed Electronics With Conductivity Enhanced through Solvent Aging. ACS Appl. Mater. Interfaces 2020, 12, 23494–23501. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, E.S.; Dervin, S.; Ganguly, P.; Dahiya, R. Biodegradable Materials for Sustainable Health Monitoring Devices. ACS Appl. Bio Mater. 2021, 4, 163–194. [Google Scholar] [CrossRef]
- Dreimol, C.H.; Guo, H.; Ritter, M.; Keplinger, T.; Ding, Y.; Günther, R.; Poloni, E.; Burgert, I.; Panzarasa, G. Sustainable wood electronics by iron-catalyzed laser-induced graphitization for large-scale applications. Nat. Commun. 2022, 13, 1–12. [Google Scholar] [CrossRef]
- Pietsch, M.; Schlisske, S.; Held, M.; Strobel, N.; Wieczorek, A.; Hernandez-Sosa, G. Biodegradable inkjet-printed electrochromic display for sustainable short-lifecycle electronics. J. Mater. Chem. C Mater. Opt. Electron. Devices 2020, 8, 16716–16724. [Google Scholar] [CrossRef]
- Nayak, L.; Mohanty, S.; Nayak, S.K.; Ramadoss, A. A review on inkjet printing of nanoparticle inks for flexible electronics. J. Mater. Chem. C 2019, 7, 8771–8795. [Google Scholar] [CrossRef]
- Ibrahim, N.; Akindoyo, J.O.; Mariatti, M. Recent development in silver-based ink for flexible electronics. J. Sci. Adv. Mater. Devices 2022, 7, 100395. [Google Scholar] [CrossRef]
- Chemical Components of Printing Inks—PCC Group. Available online: https://www.products.pcc.eu/en/k/printing-inks/ (accessed on 20 March 2023).
- Tawiah, B.; Howard, E.K.; Asinyo, B.K. The chemistry of inkjet inks for digital textile printing-review. BEST Int. J. Manag. Inf. Technol. Eng. (BEST IJMITE) 2019, 4, 61–78. [Google Scholar]
- Kipphan, H. Handbook of Print Media: Technologies and Production Methods; Springer Science and Business Media: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Comisión Europea, Dirección General de Medio Ambiente. Communication from The Commission to The European Parliament, The Council, The European Economic and Social Committee and The Committee of The Regions. EU Policy Framework on Biobased, Biodegradable and Compostable Plastics; Comisión Europea, Dirección General de Medio Ambiente: Brussels, Belgium, 2022. [Google Scholar]
- ISO 14855-2:2018; ISO Determination of The Ultimate Aerobic Biodegradability of Plastic Materials under Controlled Composting Conditions—Method by Analysis of Evolved Carbon Dioxide—Part 2: Gravimetric Measurement of Carbon Dioxide Evolved in A Laboratory-Scale Test. ISO: Geneva, Switzerland, 2019.
- ISO 14852:2018; ISO Determination of The Ultimate Aerobic Biodegradability of Plastic Materials in An Aqueous Medium—Method by Analysis of Evolved Carbon Dioxide. ISO: Geneva, Switzerland, 2019.
- Ratte, H.T. Bioaccumulation and toxicity of silver compounds: A review. Environ. Toxicol. Chem. 1999, 18, 89–108. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, M. Biodegradation of Carbon Nanotubes by Macrophages. Front. Mater. 2019, 6, 225. [Google Scholar] [CrossRef]
- Taherian, R.; Kausar, A. The Theory of Electrical Conductivity. In Electrical Conductivity in Polymer-Based Composites; Elsevier Science & Technology Books: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Haynes, W.M.; Lide, D.R.; Bruno, T.J. CRC Handbook of Chemistry and Physics, 97th ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Wellner, M. Elements of Physics; Plenum Press: New York, NY, USA, 1991. [Google Scholar] [CrossRef]
- Wang, Y.A.; Lu, S.M.; He, W.M.; Gong, S.A.A.; Zhang, Y.M.; Zhao, X.; Fu, Y.; Zhu, Z. Modeling and characterization of the electrical conductivity on metal nanoparticles/carbon nanotube/polymer composites. Sci. Rep. 2022, 12, 10448. [Google Scholar] [CrossRef] [PubMed]
- Guilger-Casagrande, M.; Germano-Costa, T.; Pasquoto-Stigliani, T.; Fraceto, L.F.; Lima, R.d. Biosynthesis of silver nanoparticles employing Trichoderma harzianum with enzymatic stimulation for the control of Sclerotinia sclerotiorum. Sci. Rep. 2019, 9, 14351–14359. [Google Scholar] [CrossRef] [PubMed]
- Wolny-Koładka, K.; Malina, D.; Suder, A.; Pluta, K.; Wzorek, Z. Bio-Based Synthesis of Silver Nanoparticles from Waste Agricultural Biomass and Its Antimicrobial Activity. Processes 2022, 10, 389. [Google Scholar] [CrossRef]
- Safian, M.T.; Haron, U.S.; Mohamad Ibrahim, M.N. A Review on Bio-based Graphene Derived from Biomass Wastes. Bioresources 2020, 15, 9756–9785. [Google Scholar] [CrossRef]
- Afre, R.A.; Soga, T.; Jimbo, T.; Kumar, M.; Ando, Y.; Sharon, M.; Somani, P.R.; Umeno, M. Carbon nanotubes by spray pyrolysis of turpentine oil at different temperatures and their studies. Microporous Mesoporous Mater. 2006, 96, 184–190. [Google Scholar] [CrossRef]
- Ghosh, P.; Afre, R.A.; Soga, T.; Jimbo, T. A simple method of producing single-walled carbon nanotubes from a natural precursor: Eucalyptus oil. Mater. Lett. 2007, 61, 3768–3770. [Google Scholar] [CrossRef]
- Kumar, M.; Ando, Y. Single-wall and multi-wall carbon nanotubes from camphor—A botanical hydrocarbon. Diam. Relat. Mater. 2003, 12, 1845–1850. [Google Scholar] [CrossRef]
- Titirici, M.M.; White, R.J.; Brun, N.; Budarin, V.L.; Su, D.S.; Del Monte, F.; Clark, J.H.; MacLachlan, M.J. Sustainable carbon materials. Chem. Soc. Rev. 2014, 44, 250–290. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. Graphitic carbon nanostructures from cellulose. Chem. Phys. Lett. 2010, 490, 63–68. [Google Scholar] [CrossRef]
- Su, D.S.; Rinaldi, A.; Frandsen, W.; Weinberg, G. Nanocarbons: Efficient synthesis using natural lava as supported catalyst. Phys. Status Solidi (B) 2007, 244, 3916–3919. [Google Scholar] [CrossRef]
- Endo, M.; Takeuchi, K.; Kim, Y.A.; Park, K.C.; Ichiki, T.; Hayashi, T.; Fukuyo, T.; Iinou, S.; Su, D.S.; Terrones, M.; et al. Simple synthesis of multiwalled carbon nanotubes from natural resources. ChemSusChem 2008, 1, 820–822. [Google Scholar] [CrossRef]
- Chen, X.G.; Su, D.S.; Hamid, S.B.A.; Schlögl, R.; Li, P.; Yu, H.; Akinwande, A.I.; Milne, W.I. The morphology, porosity and productivity control of carbon nanofibers or nanotubes on modified activated carbon. Carbon 2007, 45, 895–898. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, X.; Guo, Q.; Gu, L.; Guo, Y.; Feng, F. Growth of carbon nanotubes on natural organic precursors by chemical vapor deposition. Carbon 2011, 49, 2155–2158. [Google Scholar] [CrossRef]
- Pol, V.G.; Thiyagarajan, P. Remediating plastic waste into carbon nanotubes. J. Environ. Monit. 2010, 12, 455–459. [Google Scholar] [CrossRef]
- Lee, Y.K.; Kim, J.; Kim, Y.; Kwak, J.W.; Yoon, Y.; Rogers, J.A. Room Temperature Electrochemical Sintering of Zn Microparticles and Its Use in Printable Conducting Inks for Bioresorbable Electronics. Adv. Mater. 2017, 29, 1702665. [Google Scholar] [CrossRef]
- Hwang, S.; Song, J.; Huang, X.; Cheng, H.; Kang, S.; Kim, B.H.; Kim, J.; Yu, S.; Huang, Y.; Rogers, J.A. High-Performance Biodegradable/Transient Electronics on Biodegradable Polymers. Adv. Mater. 2014, 26, 3905–3911. [Google Scholar] [CrossRef]
- Lee, S.; Hong, Y.; Shim, B.S. Biodegradable PEDOT:PSS/Clay Composites for Multifunctional Green-Electronic Materials. Adv. Sustain. Syst. 2022, 6, 2100056. [Google Scholar] [CrossRef]
- Xu, C.; Guan, S.; Wang, S.; Gong, W.; Liu, T.; Ma, X.; Sun, C. Biodegradable and electroconductive poly(3,4-ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering. Mater. Sci. Eng. C 2018, 84, 32–43. [Google Scholar] [CrossRef]
- Feig, V.R.; Tran, H.; Bao, Z. Biodegradable Polymeric Materials in Degradable Electronic Devices. ACS Cent. Sci. 2018, 4, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Mantione, D.; Del Agua, I.; Sanchez-Sanchez, A.; Mecerreyes, D. Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics. Polymers 2017, 9, 354. [Google Scholar] [CrossRef] [PubMed]
- Simula, S.; Ikäläinen, S.; Niskanen, K.; Varpula, T.; Seppä, H.; Paukku, A. Measurement of the dielectric properties of paper. J. Imaging Sci. Technol. 1999, 43, 472–477. [Google Scholar] [CrossRef]
- Young, H.D.; Freedman, R.A.; Ford, A.L.; Zuleta Estrugo, K. University Physics, 15th ed.; Pearson: Harlow, CA, USA, 2019. [Google Scholar]
- Ehrlich, P.; Amborski, L.E.; Burton, R.L. Dielectric properties of Teflon from room temperature to 314 °C and from frequencies of 102 to 105 c/s. J. Res. Nat. Bur. Stand 1953, 51, 185–188. [Google Scholar] [CrossRef]
- Serway, R.A.; John, W.; Jewett, J. Physics for Scientists and Engineers with Modern Physics, 10th ed.; Brooks/Cole Pub.: Pacific Grove, CA, USA, 2019. [Google Scholar]
- Luo, Q.; Shen, H.; Zhou, G.; Xu, X. A mini-review on the dielectric properties of cellulose and nanocellulose-based materials as electronic components. Carbohydr. Polym. 2023, 303, 120449. [Google Scholar] [CrossRef] [PubMed]
- Lenka, T.R.; Panda, A.K. AlGaN/GaN-based HEMT on SiC substrate for microwave characteristics using different passivation layers. Pramana J. Phys. 2012, 79, 151–163. [Google Scholar] [CrossRef]
- Hoeng, F.; Denneulin, A.; Bras, J. Use of nanocellulose in printed electronics: A review. Nanoscale 2016, 8, 13131–13154. [Google Scholar] [CrossRef]
- Martinez-Crespiera, S.; Pepió-Tàrrega, B.; González-Gil, R.M.; Cecilia-Morillo, F.; Palmer, J.; Escobar, A.M.; Beneitez-Álvarez, S.; Abitbol, T.; Fall, A.; Aulin, C.; et al. Use of Nanocellulose to Produce Water-Based Conductive Inks with Ag NPs for Printed Electronics. Int. J. Mol. Sci. 2022, 23, 2946. [Google Scholar] [CrossRef]
- Tuukkanen, S.; Rajala, S. Nanocellulose as a Piezoelectric Material. In Piezoelectricity—Organic and Inorganic Materials and Applications; IntechOpen: Rijeka, Croatia, 2018; pp. 1–14. [Google Scholar] [CrossRef]
- Bibi, F.; Villain, M.; Guillaume, C.; Sorli, B.; Gontard, N. A Review: Origins of the Dielectric Properties of Proteins and Potential Development as Bio-Sensors. Sensors 2016, 16, 1232. [Google Scholar] [CrossRef]
- Bonardd, S.; Robles, E.; Barandiaran, I.; Saldías, C.; Leiva, Á.; Kortaberria, G. Biocomposites with increased dielectric constant based on chitosan and nitrile-modified cellulose nanocrystals. Carbohydr. Polym. 2018, 199, 20–30. [Google Scholar] [CrossRef]
- Ndife, M.K.; Şumnu, G.; Bayindirli, L. Dielectric properties of six different species of starch at 2450 MHz. Food Res. Int. 1998, 31, 43–52. [Google Scholar] [CrossRef]
- Wang, C.; Hsieh, C.; Hwang, J. Flexible Organic Thin-Film Transistors with Silk Fibroin as the Gate Dielectric. Adv. Mater. 2011, 23, 1630–1634. [Google Scholar] [CrossRef] [PubMed]
- Takashima, S. Dielectric dispersion of polyglutamic acid solution. Biopolymers 1963, 1, 171–182. [Google Scholar] [CrossRef]
- Jani, S.K.; Dahiya, J.N.; Roberts, J.A. Dielectric changes in hyaluronate solutions at microwave frequencies as a function of concentration, system pH, and temperature. Biopolymers 1980, 19, 931–944. [Google Scholar] [CrossRef]
- Jeevan Kumar, R.; Rajasekhar, E.; Subhan, C.M.; Panduranga, P.; Gupta, N.V.S. Dielectric Studies of Acrylic Resin, Alginate, Dental Plaster, Dental Stone, Glass Ionomer and Silver Amalgam. Indian J. Adv. Chem. Sci. 2014, 2, 98–103. [Google Scholar]
- Zaslavsky, B.Y.; Miheeva, L.M.; Rodnikova, M.N.; Spivak, G.V.; Harkin, V.S.; Mahmudov, A.U. Dielectric properties of water in the coexisting phases of aqueous polymeric two-phase systems. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1989, 85, 2857–2865. [Google Scholar] [CrossRef]
- Tomaselli, V.P.; Shamos, M.H. Electrical properties of hydrated collagen. I. Dielectric properties. Biopolymers 1973, 12, 353–366. [Google Scholar] [CrossRef]
- Dichtl, C.; Sippel, P.; Krohns, S. Dielectric Properties of 3D Printed Polylactic Acid. Adv. Mater. Sci. Eng. 2017, 2017, 6913835. [Google Scholar] [CrossRef]
- Shkir, M.; Chandekar, K.V.; Hossain, M.M.; Palanivel, B.; Ahmad, N.; Ashraf, I.M.; Somaily, H.H.; Algarni, H.; AlFaify, S. Enhanced dielectric and electrical properties of PbS nanostructures facilely synthesized by low-cost chemical route: An effect of Ce doping concentrations. Mater. Chem. Phys. 2022, 278, 125626. [Google Scholar] [CrossRef]
- Curtis, A.J. Dielectric Properties of Polyamides: Polyhexamethylene Adipamide and Polyhexamethylene Sebacamide. J. Res. Natl. Bur. Stand. A Phys. Chem. 1961, 65A, 185–196. [Google Scholar] [CrossRef]
- Koizumi, N.; Hanai, T. Dielectric properties of polyethylene glycols: Dielectric relaxation in solid state (special issue on polymer chemistry, I). Bull. Inst. Chem. Res. Kyoto Univ. 1964, 42, 115–127. [Google Scholar]
- Lorenzini, R.G.; Kline, W.M.; Wang, C.C.; Ramprasad, R.; Sotzing, G.A. The rational design of polyurea & polyurethane dielectric materials. Polymer 2013, 54, 3529–3533. [Google Scholar] [CrossRef]
- Le Bras, D.; Strømme, M.; Mihranyan, A. Characterization of Dielectric Properties of Nanocellulose from Wood and Algae for Electrical Insulator Applications. J. Phys. Chem. B 2015, 119, 5911–5917. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Long, Y.; Yang, F.; Wang, X. Degradable piezoelectric biomaterials for wearable and implantable bioelectronics. Curr. Opin. Solid State Mater. Sci. 2020, 24, 100806. [Google Scholar] [CrossRef] [PubMed]
- Williams, N.X.; Bullard, G.; Brooke, N.; Therien, M.J.; Franklin, A.D. Printable and recyclable carbon electronics using crystalline nanocellulose dielectrics. Nat. Electron. 2021, 4, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Lin, Y.T.; Chuang, W.L.; Ko, F.H. A new biodegradable gate dielectric material based on keratin protein for organic thin film transistors. Org. Electron. 2017, 44, 198–209. [Google Scholar] [CrossRef]
- Lee, D.W.; Lim, C.; Israelachvili, J.N.; Hwang, D.S. Strong adhesion and cohesion of chitosan in aqueous solutions. Langmuir ACS J. Surf. Colloids 2013, 29, 14222. [Google Scholar] [CrossRef]
- Allgén, L.; Roswall, S. A dielectric study of sodium alginate in aqueous solution. J. Polym. Sci. 1957, 23, 635–650. [Google Scholar] [CrossRef]
- Vela Cabello, R. Caracterización de la respuesta piezoeléctrica de materiales compuestos basados en PVDF—BaTiO3. Master’s Thesis, Universidad Carlos III de Madrid, Madrid, Spain, 2013. [Google Scholar]
- Gonçalves, S.; Serrado-Nunes, J.; Oliveira, J.; Pereira, N.; Hilliou, L.; Costa, C.M.; Lanceros-Méndez, S. Environmentally Friendly Printable Piezoelectric Inks and Their Application in the Development of All-Printed Touch Screens. ACS Appl. Electron. Mater. 2019, 1, 1678–1687. [Google Scholar] [CrossRef]
- Ismail, N.; Essalhi, M.; Rahmati, M.; Cui, Z.; Khayet, M.; Tavajohi, N. Experimental and theoretical studies on the formation of pure β-phase polymorphs during fabrication of polyvinylidene fluoride membranes by cyclic carbonate solvents. Green Chem. 2021, 23, 2130–2147. [Google Scholar] [CrossRef]
- Arkema Piezotech: Piezoelectric Materials. Available online: https://piezotech.arkema.com/en/Products/piezoelectric-copolymers/ (accessed on 20 March 2023).
- Nanopaint. Functional Inks. Available online: https://nanopaint-tech.com/products/functional-inks/ (accessed on 20 March 2023).
- Magron: Piezoelectric Inks. Available online: https://www.ferrozone.co.kr/blank-6 (accessed on 20 March 2023).
- Hänninen, A.; Sarlin, E.; Lyyra, I.; Salpavaara, T.; Kellomäki, M.; Tuukkanen, S. Nanocellulose and chitosan based films as low cost, green piezoelectric materials. Carbohydr. Polym. 2018, 202, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Valadorou, D.; Papathanassiou, A.N.; Kolonelou, E.; Sakellis, E. Boosting the electro-mechanical coupling of piezoelectric polyvinyl alcohol–polyvinylidene fluoride blends by dispersing nano-graphene platelets. J. Phys. D Appl. Phys. 2022, 55, 295501. [Google Scholar] [CrossRef]
- Yang, F.; Li, J.; Long, Y.; Zhang, Z.; Wang, L.; Sui, J.; Dong, Y.; Wang, Y.; Taylor, R.; Ni, D.; et al. Wafer-scale heterostructured piezoelectric bio-organic thin films. Science 2021, 373, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Chiellini, E.; Corti, A.; D’Antone, S.; Solaro, R. Biodegradation of poly (vinyl alcohol) based materials. Prog. Polym. Sci. 2003, 28, 963–1014. [Google Scholar] [CrossRef]
- Tuukkanen, S.; Toriseva, J.; Pammo, A.; Virtanen, J.; Lahti, J. Piezoelectric properties of roll-to-roll fabricated polylactic acid films. In Proceedings of the 2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC), Tonsberg, Norway, 15–18 September 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Li, Y.; Feng, J.; Zhang, J.; He, B.; Wu, Y.; Zhao, Y.; Xu, C.; Wang, J. Towards high-performance linear piezoelectrics: Enhancing the piezoelectric response of zinc oxide thin films through epitaxial growth on flexible substrates. Appl. Surf. Sci. 2021, 556, 149798. [Google Scholar] [CrossRef]
- Ting, Y.; Gunawan, H.; Zhong, J.; Chiu, C. A new poling method for piezoelectric ceramics with thick film. J. Eur. Ceram. Soc. 2014, 34, 2849–2855. [Google Scholar] [CrossRef]
- Frank, B.P.; Smith, C.; Caudill, E.R.; Lankone, R.S.; Carlin, K.; Benware, S.; Pedersen, J.A.; Fairbrother, D.H. Biodegradation of Functionalized Nanocellulose. Environ. Sci. Technol. 2021, 55, 10744–10757. [Google Scholar] [CrossRef]
- Brooke, R.; Fall, A.; Borràs, M.; Yilma, D.B.; Edberg, J.; Martinez-Crespiera, S.; Aulin, C.; Beni, V. Nanocellulose based carbon ink and its application in electrochromic displays and supercapacitors. Flex. Print. Electron. 2021, 6, 045011. [Google Scholar] [CrossRef]
- Hoeng, F.; Bras, J.; Gicquel, E.; Krosnicki, G.; Denneulin, A. Inkjet printing of nanocellulose-silver ink onto nanocellulose coated cardboard. RSC Adv. 2017, 7, 15372. [Google Scholar] [CrossRef]
- Zappi, D.; Varani, G.; Cozzoni, E.; Iatsunskyi, I.; Laschi, S.; Giardi, M.T. Innovative Eco-Friendly Conductive Ink Based on Carbonized Lignin for the Production of Flexible and Stretchable Bio-Sensors. Nanomaterials 2021, 11, 3428. [Google Scholar] [CrossRef]
- Stini, N.A.; Gkizis, P.L.; Kokotos, C.G. Cyrene: A bio-based novel and sustainable solvent for organic synthesis. Green Chem. 2022, 24, 6435. [Google Scholar] [CrossRef]
- Pan, K.; Fan, Y.; Leng, T.; Li, J.; Xin, Z.; Zhang, J.; Hao, L.; Gallop, J.; Novoselov, K.S.; Hu, Z. Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and IoT applications. Nat. Commun. 2018, 9, 5197. [Google Scholar] [CrossRef] [PubMed]
- Goma Laca. Available online: https://es.wikipedia.org/w/index.php?title=Goma_laca&oldid=148444462 (accessed on 20 March 2023).
- Sunderland, M. Sustainable Bio-Char-Based Ink Having Conductive Properties. U.S. Patent No. 11,053,405, 6 July 2021. [Google Scholar]
- Rocha Camargo, J.; Almeida Silva, T.; Rivas, G.A.; Janegitz, B.C. Novel eco-friendly water-based conductive ink for the preparation of disposable screen-printed electrodes for sensing and biosensing applications. Electrochim. Acta 2022, 409, 139968. [Google Scholar] [CrossRef]
- Koga, H.; Saito, T.; Kitaoka, T.; Nogi, M.; Suganuma, K.; Isogai, A. Transparent, Conductive, and Printable Composites Consisting of TEMPO-Oxidized Nanocellulose and Carbon Nanotube. Biomacromolecules 2013, 14, 1160–1165. [Google Scholar] [CrossRef]
- Lee, S.; Koo, J.; Kang, S.K.; Park, G.; Lee, Y.J.; Chen, Y.Y.; Lim, S.A.; Lee, K.M.; Rogers, J.A. Metal microparticle—Polymer composites as printable, bio/ecoresorbable conductive inks. Mater. Today 2018, 21, 207–215. [Google Scholar] [CrossRef]
- Doble, M.; Kruthiventi, A.K. Alternate Solvents. In Green Chemistry and Engineering; Academic Press: Cambridge, MA, USA, 2007; pp. 93–104. [Google Scholar] [CrossRef]
- Mavuri, A.; Mayes, A.G.; Alexander, M.S. Inkjet Printing of Polyacrylic Acid-Coated Silver Nanoparticle Ink onto Paper with Sub-100 Micron Pixel Size. Materials 2019, 12, 2277. [Google Scholar] [CrossRef]
- Lin, Z.; Le, T.; Song, X.; Yao, Y.; Li, Z.; Moon, K.; Tentzeris, M.M.; Wong, C. Preparation of water-based carbon nanotube inks and application in the inkjet printing of carbon nanotube gas sensors. J. Electron. Packag. 2013, 135, 011001. [Google Scholar] [CrossRef]
- Lee, Y.I.; Kim, S.; Lee, K.J.; Myung, N.V.; Choa, Y.H. Inkjet printed transparent conductive films using water-dispersible single-walled carbon nanotubes treated by UV/ozone irradiation. Thin Solid Film. 2013, 536, 160–165. [Google Scholar] [CrossRef]
- Kordás, K.; Mustonen, T.; Tóth, G.; Jantunen, H.; Lajunen, M.; Soldano, C.; Talapatra, S.; Kar, S.; Vajtai, R.; Ajayan, P. Inkjet Printing of Electrically Conductive Patterns of Carbon Nanotubes. Small 2006, 2, 1021–1025. [Google Scholar] [CrossRef]
- Gracia-Espino, E.; Sala, G.; Pino, F.; Halonen, N.; Luomahaara, J.; Mäklin, J.; Tóth, G.; Kordás, K.; Jantunen, H.; Terrones, M.; et al. Electrical transport and field-effect transistors using inkjet-printed SWCNT films having different functional side groups. ACS Nano 2010, 4, 3318–3324. [Google Scholar] [CrossRef]
- Fan, Z.; Wei, T.; Luo, G.; Wei, F. Fabrication and characterization of multi-walled carbon nanotubes-based ink. J. Mater. Sci. 2005, 40, 5075–5077. [Google Scholar] [CrossRef]
- Heurtematte, A.; Small, W.R.; Paunov, V.N. Inkjet printed water sensitive transparent films from natural gum–carbon nanotube composites. Soft Matter 2007, 3, 840–843. [Google Scholar] [CrossRef]
2023 EU CRMs | ||||||
---|---|---|---|---|---|---|
Antimony | Bismuth | Feldspar | Helium | Manganese | Phosphorus | Tantalum |
Arsenic | Boron | Fluorspar | Heavy Rare Earth Elements (HREE) | Natural graphite | Platinum Group Metals (PGM) | Titanium metal |
Bauxite | Cobalt | Gallium | Light Rare Earth Elements (LREE) | Nickel | Scandium | Tungsten |
Baryte | Coking coal | Germanium | Lithium | Niobium | Silicon metal | Vanadium |
Beryllium | Copper | Hafnium | Magnesium | Phosphate rock | Strontium |
Material | Screen Printing | Inkjet Printing | Refs. |
---|---|---|---|
Functional material | 5–70% | 10–30% | [13,14] |
Polymeric resin/Binder | 20–50% | 5–30% | [13,14] |
Solvent | 15–65% | 60–90% | [13,14] |
Additives | <5–10% | <5–10% | [13,14] |
Material | Conductivity | Ref. |
---|---|---|
Silver | 6.8 × 107 S/m | [20] |
Copper | 5.98 × 107 S/m | [20] |
Gold | 4.3 × 107 S/m | [20] |
Aluminium | 3.8 × 107 S/m | [20] |
Magnesium | 2.2 × 107 S/m | [21] |
Wolframium | 1.8 × 107 S/m | [22] |
Zinc | 1.7 × 107 S/m | [21] |
Nickel | 1.5 × 107 S/m | [20] |
Iron | 1.04 × 107 S/m | [21] |
Platinum | 9.5 × 106 S/m | [21] |
Palladium | 9.4 × 106 S/m | [21] |
Tin | 8.7 × 106 S/m | [21] |
Carbon | 102–106 S/m | [23] |
PEDOT: PSS | 2 × 10−1–2.1 × 105 S/m | [23] |
PEDOT:Biopolymer | Conductivity (S/m) | Ref. |
---|---|---|
PEDOT:dextran sulphate | 7 × 102 | [42] |
PEDOT:DNA | 102 | [42] |
PEDOT:heparin | 0.1–5 | [42] |
PEDOT:chondroitin Sulphate | 0.2–7.5 | [42] |
PEDOT:hyaluronic acid | 0.3–7.1 | [42] |
PEDOT:sulphated cellulose | 57.6 | [42] |
PEDOT:pectin | <1 | [42] |
PEDOT:guar gum | 2.8–12.9 | [42] |
Material | Dielectric Constant | Frequency | Ref. |
---|---|---|---|
Paper | 2–4 | 106 Hz | [43] |
Mica | 3–6 | 103 Hz | [44] |
Teflon | 2 | 103 Hz | [45] |
Rubber | 6.7 | - | [46] |
Polymers (general) | ~2 | 103 Hz | [43] |
High-Density Polyethylene (HDPE) | 2.3 | 103 Hz | [43] |
Low-Density Polyethylene (LDPE) | 2.3 | 103 Hz | [43] |
Polypropylene (PP) | 2.3 | 106 Hz | [43] |
Mylar | 3.25 | 103 Hz | [43] |
Kapton | 3.9 | 103 Hz | [43] |
Polyvinyl chloride (PVC) | 3.4 | 103 Hz | [47] |
Glass (Pyrex) | 5 | - | [46] |
Porcelain | 6–8 | - | [46] |
Company | Name | Technology | Material |
---|---|---|---|
Piezotech®—Arkema-CRRA (Pierre-Bénite, France) | Ink L | Spin-coating Slot-die | Piezotech® FC20 Piezotech® RT-TS |
Ink H | Spin-coating Solvent-casting | Piezotech® FC20 Piezotech® RT-TS | |
Ink P | Screen printing | Piezotech® FC20 | |
Piezotech® RT-TS | |||
Nanopaint (Braga, Portugal) | PEInk01NP | Screen printing | PVDF-TrFe |
Magron (Ansan-si, Republic of Korea) | Screen printing Doctor blade Stencil Spray | PVDF-TrFe |
Binder | Active Element | Solvent | Other Materials | Tech. | Sustainability Reason | Ref. | ||
---|---|---|---|---|---|---|---|---|
PEO (Polyox N-80) | Zinc// Wolframium | Methanol | - | Screen printing | Biodegradable binder | [1] | ||
Poly butanedithiol triallyl isocyanurate | Molybdenum (1–5 µm) | PBTPA | 2,2-dimethoxy-2- phenylacetophenone | Screen printing | Biodegradable binder | [95] | ||
Cyrene | Graphene | N-methyl-2- pyrrolidinone (NMP, >99%) | CAB (butyryl content 35–39%) | Screen printing | Biodegradable binder and graphene as functional material | [90] | ||
PLA | Wolframium | Tetrahydrofuran (THF) | - | Screen printing | Biodegradable binder | [86] | ||
PLA | Graphene nanoplates (GnPs) | Anisole (C7H8O) | Sodium carboxymethyl cellulose (SCC) | Screen printing | Biodegradable binder and graphene as functional material | [5] | ||
Polyoxyethylenesorbitan Tristearate (Tween® 65) | ||||||||
Milli-Q ultrapure water | ||||||||
Shellac | Graphite flakes | Ethanol/ Pentanol | Carbon black | Screen printing | Biobased and biodegradable binder and graphite as functional material | [5] | ||
PEG | ||||||||
Nanocellulose | Carbon black | Propylene glycol | Glycerol | Screen printing | Biobased binder and carbon black as functional material | [86] | ||
2-HEC | ||||||||
Cellulose acetate | Carbon from lignin | Cyclohexane | Screen printing | Biobased carbon and biodegradable binder | [88] | |||
Chitosan | Graphite | Water based: Acetic acid aqueous solution | Glycerol | Screen printing | Graphite as functional material and water-based | [93] | ||
Gellan gum// Xantana gum | CNTs | Water-based | - | Inkjet printing | Carbon as functional material, biobased and biodegradable solvent and water-based | [103] | ||
Aqueous dispersion TEMPO -oxidized CNFs | CNTs | Water | - | Inkjet printing | Carbon as functional material, water-based and nanocellulose as binder | [94] | ||
CNCs suspension | Silver | CNCs suspension | Hexadecylpyridinium chloride solution | Inkjet printing | CNCs as the binder | [87] | ||
AgNO3 | ||||||||
NaBH4 | ||||||||
Aqueous solution of TEMPO | Silver | Water-based: Water/ Isopropyl alcohol | CNCs | NaBr | Ethanol | Screen printing | Water as solvent and cellulose as additive | [50] |
NaOCl | NaOH | AgNO3 | ||||||
NaBH4 or Hydrazine | ||||||||
Ethylene glycol | ||||||||
Dispersing agent (Disperbyk 2012 1–5 wt.%) | ||||||||
Hydroxypropyl methylcellulose | ||||||||
Rheological additive (Reobyk 7420) | ||||||||
HCl | ||||||||
- | PEDOT: dextran sulfate | Water-based | - | Inkjet printing | Biopolymer to increase PEDOT conductivity and water-based | [42] | ||
- | PEDOT: DNA | Water-based | - | Inkjet printing | Biopolymer to increase PEDOT conductivity and water-based | [42] | ||
- | PEDOT: heparin | Water-based | - | Inkjet printing | Biopolymer to increase PEDOT conductivity and water-based | [42] | ||
- | PEDOT: chondroitin sulfate | Water-based | - | Inkjet printing | Biopolymer to increase PEDOT conductivity and water-based | [42] | ||
- | PEDOT: hyaluronic acid | Water-based | - | Inkjet printing | Biopolymer to increase PEDOT conductivity and water-based | [42] | ||
- | PEDOT: sulfated cellulose | Water-based | - | Inkjet printing | Biopolymer to increase PEDOT conductivity and water-based | [42] | ||
- | PEDOT: pectin | Water-based | - | Inkjet printing | Biopolymer to increase PEDOT conductivity and water-based | [42] | ||
- | PEDOT: guar gum | Water-based | - | Inkjet printing | Biopolymer to increase PEDOT conductivity and water-based | [42] | ||
- | Sodium Alginate | Water-based | - | Screen printing | Alginate as functional material and water-based | [71] | ||
- | CNCs | Water-based | - | Aerosol printing | CNCs as active material and water-based | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Duenas, L.; Gomez, E.; Larrañaga, M.; Blanco, M.; Goitandia, A.M.; Aranzabe, E.; Vilas-Vilela, J.L. A Review on Sustainable Inks for Printed Electronics: Materials for Conductive, Dielectric and Piezoelectric Sustainable Inks. Materials 2023, 16, 3940. https://doi.org/10.3390/ma16113940
Sanchez-Duenas L, Gomez E, Larrañaga M, Blanco M, Goitandia AM, Aranzabe E, Vilas-Vilela JL. A Review on Sustainable Inks for Printed Electronics: Materials for Conductive, Dielectric and Piezoelectric Sustainable Inks. Materials. 2023; 16(11):3940. https://doi.org/10.3390/ma16113940
Chicago/Turabian StyleSanchez-Duenas, Leire, Estibaliz Gomez, Mikel Larrañaga, Miren Blanco, Amaia M. Goitandia, Estibaliz Aranzabe, and José Luis Vilas-Vilela. 2023. "A Review on Sustainable Inks for Printed Electronics: Materials for Conductive, Dielectric and Piezoelectric Sustainable Inks" Materials 16, no. 11: 3940. https://doi.org/10.3390/ma16113940
APA StyleSanchez-Duenas, L., Gomez, E., Larrañaga, M., Blanco, M., Goitandia, A. M., Aranzabe, E., & Vilas-Vilela, J. L. (2023). A Review on Sustainable Inks for Printed Electronics: Materials for Conductive, Dielectric and Piezoelectric Sustainable Inks. Materials, 16(11), 3940. https://doi.org/10.3390/ma16113940