Description of Material Properties of Degraded and Damaged Segments of Multi-Leaf Masonry in Analyses of Large Three-Dimensional Structures
Abstract
:1. Introduction
2. Problem Formulation
- —elasticity matrix;
- —strain matrix;
- —an allocation (incidence) matrix, assigns degrees of freedom to elements;
- —macro-element stiffness matrix.
- Numerical integration is carried out according to the relationship written in the form:
- i
- —node number ,
- n
- —number of nodes of the macro-element,
- L
- —operator matrix,
- —shape functions.
3. Strategy for Performance of Analyses
- is variable over time stiffness matrix of the modelled medium;
- is the vector of unknown node displacements of the model at step i of the iteration;
- is the load vector.
- Stage I
- —analysis of large areas or volumes and macro-element formation;
- Stage II
- —analysis of displacements, assessment of stress and strain fields inside the macro-elements;
- Stage III
- —parameters modification in a model according to (11) and recomputation;
- Stage IV
- —recommendations for repairs and strengthening.
4. Application Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szabó, S.; Funari, M.F.; Lourenço, P.B. Masonry patterns’ influence on the damage assessment of URM walls: Current and future trends. Dev. Built Environ. 2023, 13, 100119. [Google Scholar] [CrossRef]
- Schiantella, M.; Cluni, F.; Gusella, V. Parametric Analysis of Failure Loads of Masonry Textures by Means of Discontinuity Layout Optimization (DLO). Materials 2022, 15, 3691. [Google Scholar] [CrossRef] [PubMed]
- Rios, A.J.; Pingaro, M.; Reccia, E.; Trovalusci, P. Statistical assessment of in-plane masonry panels using limit analysis with sliding mechanism. J. Eng. Mech. 2022, 148. [Google Scholar] [CrossRef]
- Ramalho, M.; Taliercio, A.; Anzani, A.; Binda, L.; Papa, E. Experimental and numerical study of multi-leaf masonry walls. In Structural Studies, Repairs and Maintenance of Heritage Architecture IX; Brebbia, C.A., Torpiano, A., Eds.; WIT Press: Southampton, UK, 2005; pp. 333–342. [Google Scholar]
- Anzani, A.; Garavaglia, E.; Binda, L. Long-term damage of historic masonry: A probabilistic model. Constr. Build. Mater. 2009, 23, 713–724. [Google Scholar] [CrossRef]
- Miedziałowski, C. Corrosion and stress damage of facade elements of historic buildings. In Protection of Buildings from Moisture, Biological Corrosion and Fire. Vol. 14; Skowroński, W., Ed.; Polish Association of Building Mycologists: Wrocław, Poland, 2017; pp. 125–136. (In Polish) [Google Scholar]
- Borri, A.; Corradi, M.; Castori, G.; De Maria, A. A method for the analysis and classification of historic masonry. Bull. Earthq. Eng. 2015, 13, 2647–2665. [Google Scholar] [CrossRef]
- Krentowski, J.; Chyży, T.; Dunaj, P. Sudden collapse of a 19th-century masonry structure during its renovation process. Eng. Fail. Anal. 2017, 82, 540–553. [Google Scholar] [CrossRef]
- Stryszewska, T.; Kańka, S. Forms of Damage of Bricks Subjected to Cyclic Freezing and Thawing in Actual Conditions. Materials 2019, 12, 1165. [Google Scholar] [CrossRef]
- Messler, R.W., Jr. Joining of Materials and Structures. From Pragmatic Process to Enabling Technology; Elsevier, Butterworth-Heinemann: Oxford, UK, 2004. [Google Scholar]
- Desai, C.S.; Zaman, M.M.; Lightner, J.G.; Siriwardane, H.J. Thin-layer element for interfaces and joints. Int. J. Numer. Anal. Methods Geomech. 1984, 8, 19–43. [Google Scholar] [CrossRef]
- Hu, L.; Pu, J.L. Application of damage model for soil–structure interface. Comput. Geotech. 2003, 30, 165–183. [Google Scholar] [CrossRef]
- Lourenço, P.B.; Rots, J.G. A multi-surface interface model for the analysis of masonry structures. J. Eng. Mech. 1997, 123, 660–668. [Google Scholar] [CrossRef]
- Willam, K.; Rhee, I.; Shing, B. Interface damage model for thermomechanical degradation of heterogeneous materials. Comput. Methods Appl. Mech. Eng. 2004, 193, 3327–3350. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. The Finite Element Method: Its Basis and Fundamentals, 7th ed.; Elsevier, Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar]
- Lemos, J. Discrete element modeling of masonry structures. Int. J. Archit. Herit. Conserv. Anal. Restor. 2007, 1, 190–213. [Google Scholar] [CrossRef]
- Baraldi, D.; Reccia, E.; Cecchi, A. In plane loaded masonry walls: DEM and FEM/DEM models. A critical review. Meccanica 2018, 53, 1613–1628. [Google Scholar] [CrossRef]
- Lourenço, P.B. Computations of historical masonry constructions. Prog. Struct. Eng. Mater. 2002, 4, 301–319. [Google Scholar] [CrossRef]
- Asteris, P.G.; Plevris, V.; Sarhosis, V.; Papaloizou, L.; Mohebkhah, A.; Komodromos, P.; Lemos, J.V. Numerical modeling of historic masonry structures. In Handbook of Research on Seismic Assessment and Rehabilitation of Historic Structures; Asteris, P.G., Plevris, V., Eds.; IGI Global: Hershey, PA, USA, 2015; pp. 213–255. [Google Scholar]
- D’Altri, A.M.; Sarhosis, V.; Milani, G.; Rots, J.; Cattari, S.; Lagomarsino, S.; Sacco, E.; Tralli, A.; Castellazzi, G.; de Miranda, S. Modeling strategies for the computational analysis of unreinforced masonry structures: Review and classification. Arch. Comput. Methods Eng. 2020, 27, 1153–1185. [Google Scholar] [CrossRef]
- Sacco, E.; Addessi, D.; Sab, K. New trends in mechanics of masonry. Meccanica 2018, 53, 1565–1569. [Google Scholar] [CrossRef]
- Roca, P.; Cervera, M.; Gariup, G.; Pela, L. Structural analysis of masonry historical constructions. Classical and advanced approaches. Arch. Comput. Methods Eng. 2010, 17, 299–325. [Google Scholar] [CrossRef]
- Niekamp, R.; Markovic, D.; Ibrahimbegovic, A.; Matthies, H.G.; Taylor, R.L. Multi-scale modelling of heterogeneous structures with inelastic constitutive behavior. Part II – software coupling implementation aspects. Eng. Comput. 2009, 26, 6–28. [Google Scholar] [CrossRef]
- Ibrahimbegovic, A.; Davene, L.; Colliat, J.-B.; Brancherie, D. Computational mechanics of integrity & durability in extreme environment for concrete & reinforced-concrete structures. IACM Expr. 2010, 27, 9–15. [Google Scholar]
- Leonetti, L.; Greco, F.; Trovalusci, P.; Luciano, R.; Masiani, R. A multiscale damage analysis of periodic composites using a couple-stress/Cauchy multidomain model: Application to masonry structures. Compos. B Eng. 2018, 141, 50–59. [Google Scholar] [CrossRef]
- Lourenço, P.B.; Silva, L.C. Computational applications in masonry structures: From the meso-scale to the super-large/super-complex. Int. J. Multiscale Comput. Eng. 2020, 18, 1–30. [Google Scholar] [CrossRef]
- Drougkas, A.; Sarhosis, V. Micro-mechanical homogenisation of three-leaf masonry walls under compression. Eng. Struct. 2021, 245, 112890. [Google Scholar] [CrossRef]
- Geers, M.G.D.; Kouznetsova, V.G.; Matouš, K.; Yvonnet, J. Homogenization methods and multiscale modeling: Nonlinear problems. In Encyclopedia of Computational Mechanics, Part 1. Solids and Structures, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 1–34. [Google Scholar]
- Kutut, V.; Ustinovičius, L. Systemotechnical Assessment of the Real Cultural Heritage Management; Publishing House of Bialystok University of Technology: Białystok, Poland, 2021; pp. 22–29. [Google Scholar]
- Roca, P. Considerations on significance of history for the structural analysis of anscient constructions. In Proceedings of the IVth Int. Seminar on Structural Analysis of Historical Constructions, Padwa, Italy, 10–13 November 2004; pp. 63–73. [Google Scholar]
- Modena, C. Design aproaches of interventions for the safety and conservation of historic buildings. In Proceedings of the IVth Int. Seminar on Structural Analysis of Historical Constructions, Padwa, Italy, 10–13 November 2004; pp. 75–83. [Google Scholar]
- Jasieńko, J.; Łodygowski, T.; Rapp, P. Repair, Maintenance and Strengthening of Selected Historic Brick Structures; Dolnośląskie Wydawnictwo Edukacyjne: Wrocław, Poland, 2006. (In Polish) [Google Scholar]
- Smith, I.M.; Griffiths, D.V.; Margetts, L. Programming the Finite Element Method, 5th ed.; John Wiley & Sons: Chichester, UK, 2014; pp. 615–617. [Google Scholar]
- Jasieńko, J.; Szyszka, M. Assessing mechanical parameters of historical masonry structures through experimental testing in relation to structural conservation work. J. Herit. Conserv. 2013, 36, 7–17. [Google Scholar]
- Ottosen, N.S.; Ristinmaa, M. The Mechanics of Constitutive Modeling; Elsevier: Oxford, UK, 2005. [Google Scholar]
- Milani, G.; Lourenço, P.B.; Tralli, A. Homogenised limit analysis of masonry walls, Part I: Failure surfaces. Comput. Struct. 2006, 84, 166–180. [Google Scholar] [CrossRef]
- Milani, G.; Lourenço, P.B.; Tralli, A. Homogenised limit analysis of masonry walls, Part II: Structural examples. Comput. Struct. 2006, 84, 181–195. [Google Scholar] [CrossRef]
- Mann, W.; Müller, H. Failure of shear-stressed masonry–An enlarged theory, tests and application to shear-walls. Proc. Br. Ceram. Soc. 1982, 30, 223–235. [Google Scholar]
- Dolatshahi, K.M.; Aref, A.J. Two-dimensional computational framework of meso–scale rigid and line interface elements for masonry structures. Eng. Struct. 2011, 33, 3657–3667. [Google Scholar] [CrossRef]
- Walendziuk, A. Computer Simulation of Failure States Changes in Brittle Heterogeneous Materials and Structures Induced by External Interference Processes. Ph.D. Thesis, Faculty of Civil and Environmental Engineering, Bialystok University of Technology, Białystok, Poland, 2016. (In Polish). [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miedziałowski, C.; Walendziuk, A. Description of Material Properties of Degraded and Damaged Segments of Multi-Leaf Masonry in Analyses of Large Three-Dimensional Structures. Materials 2023, 16, 4076. https://doi.org/10.3390/ma16114076
Miedziałowski C, Walendziuk A. Description of Material Properties of Degraded and Damaged Segments of Multi-Leaf Masonry in Analyses of Large Three-Dimensional Structures. Materials. 2023; 16(11):4076. https://doi.org/10.3390/ma16114076
Chicago/Turabian StyleMiedziałowski, Czesław, and Adam Walendziuk. 2023. "Description of Material Properties of Degraded and Damaged Segments of Multi-Leaf Masonry in Analyses of Large Three-Dimensional Structures" Materials 16, no. 11: 4076. https://doi.org/10.3390/ma16114076
APA StyleMiedziałowski, C., & Walendziuk, A. (2023). Description of Material Properties of Degraded and Damaged Segments of Multi-Leaf Masonry in Analyses of Large Three-Dimensional Structures. Materials, 16(11), 4076. https://doi.org/10.3390/ma16114076