Effect of Stabilized Martensite on the Long-Term Performance of Superelastic NiTi Endodontic Files
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Calorimetric Tests
2.3. Microstructures
2.4. Heat Treatments
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andreasen, G.F.; Morrow, R.E. Laboratory and clinical analysis of Nitinol wire. Am. J. Orthod. 1978, 73, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Arciniegas, M.; Casals, J.; Manero, J.M.; Peña, J.; Gil, F.J. Study of hardness and wear behaviour of NiTi shape memory alloys. J. Alloys Compd. 2008, 460, 213–219. [Google Scholar] [CrossRef]
- Arciniegas, M.; Manero, J.; Peña, J.; Gil, F.; Planell, J. Study of New Multifunctional Shape Memory and Low Elastic Modulus Ni-Free Ti Alloys. Met. Mater. Trans. A 2008, 39, 742–751. [Google Scholar] [CrossRef]
- Barrabés, M.; Michiardi, A.; Aparicio, C.; Sevilla, P.; Planell, J.A.; Gil, F.J. Oxidized nickel-titanium foams for bone reconstructions: Chemical and mechanical characterization. J. Mater. Sci. Mat. Med. 2007, 18, 2123–2129. [Google Scholar] [CrossRef] [PubMed]
- Bowles, I.J.S.; Mackencie, J.K. Crystallography of martensite transformation. Acta Met. 1954, 2, 129–132. [Google Scholar] [CrossRef]
- Duerig, T.W.; Zadno, R. Engineering Aspects of Shape Memory Alloys; Butterworth-Heinemann Ltd.: Oxford, UK, 1990; pp. 124–132. [Google Scholar]
- Escher, K.; Hühner, H. Metallographical preparation of NiTi shape memory alloys. Prakt. Met. 1990, 27, 231–235. [Google Scholar]
- Gil, F.J.; Planell, J.A. In Vitro thermomechanical ageing of Ni-Ti alloys. J. Biomater. Appl. 1998, 12, 237–248. [Google Scholar] [CrossRef]
- Gil, F.J.; Manero, J.M.; Planell, J.A. Effect of grain size on the martensitic transformation in NiTi alloys. J. Mater. Sci. 1995, 30, 2526–2530. [Google Scholar] [CrossRef]
- Gil, F.J.; Fernández, E.; Manero, J.M.; Planell, J.A.; Sabrià, J.; Cortada, M.; Giner, L. A study of load cycling in a NiTi alloy with superelastic behaviour used in dental prosthetic fixators. Biomed. Mat. Eng. 1996, 6, 153–158. [Google Scholar]
- Gursoy, U.K.; Sokucu, O.; Uitto, V.-J.; Aydin, A.; Demirer, S.; Toker, H.; Erdem, O.; Sayal, A. The role of nickel accumulation and epithelial cell proliferation in orthodontic treatment-induced gingival overgrowth. Eur. J. Orthod. 2007, 29, 555–558. [Google Scholar] [CrossRef] [Green Version]
- Haasters, J.; Baumgart, F.; Bensmann, G. Memory Alloys-New Material for Implantation in Orthopedic Surgery, Part 2 in Current Concepts of Internal Fixation of Fractures; Uthoff, H.K., Ed.; Springer: New York, NY, USA, 1980; p. 128. [Google Scholar]
- Shen, Y.; Qian, W.; Abtin, H.; Gao, Y.; Haapasalo, M. Fatigue Testing of Controlled Memory Wire Nickel-Titanium Rotary Instruments. J. Endod. 2011, 37, 997–1001. [Google Scholar] [CrossRef]
- Ye, J.; Gao, Y. Metallurgical Characterization of M-Wire Nickel-Titanium Shape Memory Alloy Used for Endodontic Rotary Instruments during Low-cycle Fatigue. J. Endod. 2012, 38, 105–107. [Google Scholar] [CrossRef] [PubMed]
- Schafer, E.; Vlassis, M. Comparative investigation of two rotary nickel-titanium instruments: ProTaper versus RaCe. Part 2. Cleaning effectiveness and shaping ability in severely curved root canals of extracted teeth. Int. Endod. J. 2004, 37, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Saber, S.E.D.M.; Nagy, M.M.; Schafer, E. Comparative evaluation of the shaping ability of ProTaper Next, iRaCe and Hyflex CM rotary NiTi files in severely curved root canals. Int. Endod. J. 2015, 48, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Pasternak-Júnior, B.; Neto, M.D.D.S.; Dionisio, V.C.; Pécora, J.D.; Silva, R.G. Analysis of kinematic, kinetic and electromyographic patterns during root canal preparation with rotary and manual instruments. J. Appl. Oral Sci. 2012, 20, 57–63. [Google Scholar] [CrossRef]
- García, M.; Duran-Sindreu, F.; Mercadé, M.; Bueno, R.; Roig, M. A Comparison of Apical Transportation between ProFile and RaCe Rotary Instruments. J. Endod. 2012, 38, 990–992. [Google Scholar] [CrossRef]
- Praisarnti, C.; Chang, J.W.; Cheung, G.S. Electropolishing Enhances the Resistance of Nickel-Titanium Rotary Files to Corrosion–Fatigue Failure in Hypochlorite. J. Endod. 2010, 36, 1354–1357. [Google Scholar] [CrossRef]
- Gil, F.J.; Planell, J.A. Thermal cycling and ageing effects in Ni-Ti shape memory alloys used in biomedical applications. J. Biomech. 1998, 1001, 135. [Google Scholar] [CrossRef]
- Rodrigues, C.T.; Duarte, M.A.H.; de Almeida, M.M.; de Andrade, F.B.; Bernardineli, N. Efficacy of CM-Wire, M-Wire, and Nickel-Titanium Instruments for Removing Filling Material from Curved Root Canals: A Micro–Computed Tomography Study. J. Endod. 2016, 42, 1651–1655. [Google Scholar] [CrossRef]
- Santos, L.D.A.; Resende, P.D.; Bahia, M.G.D.A.; Buono, V.T.L. Effects of R-Phase on Mechanical Responses of a Nickel-Titanium Endodontic Instrument: Structural Characterization and Finite Element Analysis. Sci. World J. 2016, 2016, 7617493. [Google Scholar] [CrossRef] [Green Version]
- Yıldız, E.D.; Arslan, H. The effect of blue thermal treatment on endodontic instruments and apical debris extrusion during retreatment procedures. Int. Endod. J. 2019, 52, 1629–1634. [Google Scholar] [CrossRef] [PubMed]
- Faus-Matoses, V.; Faus-Llácer, V.; Ruiz-Sánchez, C.; Gallego, S.P.; Zubizarreta-Macho, Á.; Solano-Mendoza, B.; Biedma, B.M.; Faus-Matoses, I. The Cyclic Fatigue Resistance of Different Lengths of CM Gold Wire and CM Blue Wire NiTi Alloy Endodontic Rotary Files: An In Vitro Study. Appl. Sci. 2023, 13, 4612. [Google Scholar] [CrossRef]
- Tabassum, S.; Zafar, K.; Umer, F. Nickel-Titanium Rotary File Systems: What’s New? Eur. Endod. J. 2019, 4, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Gambarini, G.; Galli, M.; Di Nardo, D.; Seracchiani, M.; Donfrancesco, O.; Testarelli, L. Differences in cyclic fatigue lifespan between two different heat treated NiTi endodontic rotary instruments: WaveOne Gold vs. EdgeOne Fire. J. Clin. Exp. Dent. 2019, 11, e609–e613. [Google Scholar] [CrossRef]
- Peralta-Mamani, M.; Rios, D.; Duarte, M.A.H.; Junior, J.F.S.; Honório, H.M. Manual vs. rotary instrumentation in endodontic treatment of permanent teeth: A systematic review and meta-analysis. Am. J. Dent. 2019, 32, 311–324. [Google Scholar]
- Gil, J.; Rupérez, E.; Velasco, E.; Aparicio, C.; Manero, J.M. Mechanism of fracture of NiTi superelastic endodontic rotary instruments. J. Mater. Sci. Mater. Med. 2018, 29, 131. [Google Scholar] [CrossRef]
- Haarsters, J.; Salis-Solio, G.; Bensmann. The Use of NiTi as an Implant Material in Orthopedics. In Shape Memory in Engineering Aspects of Shape Memory Alloys; Duering, T.W., Melton, K.N., Stöckel, D., Wayman, C.M., Eds.; Butterworth-Heinemann: London, UK, 1990; pp. 426–427. [Google Scholar]
- Hirsch, P.B. Electron Microscopy of Thin Crystals; Krieger Publishing Company: Malabar, FL, USA, 1965. [Google Scholar]
- Hughes, J.L. Evaluation of Nitinol for Use as a Material in the Construction of Orthopaedic Implants; DAMD 17-74-C-4041; US Army Medical Research and Development Command: Frederick, MD, USA, 1997; pp. 306–315. [Google Scholar]
- Iwasaki, K.; Hasiguti, R.S. Martensitic Transformation; The Institute of Metals: Lovaine, UK, 1982; pp. 198–210. [Google Scholar]
- Kaufman, L.; Cohen, M. Thermodynamics and kinetics of martensitic transformations. Prog. Met. Phys. 1958, 7, 165–246. [Google Scholar] [CrossRef]
- Khalil, J.; Dlouhy, A.; Eggleler, G. Ni4Ti3—Precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformation. Acta Mater. 2002, 50, 4255–4274. [Google Scholar] [CrossRef]
- Krousbroeck, R.; Van der Perre, G.; Aernoudt, E.; Mulier, J.C. Shape memory effect in biomedical devices. In Advances in Biomaterials; Winter, G.D., Gibbons, D.F., Plenk, H., Eds.; John Wiley & Sons: New York, NY, USA, 1982; Volume 3, p. 767. [Google Scholar]
- Michiardi, A.; Aparicio, C.; Planell, J.; Gil, F. New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 77B, 249–256. [Google Scholar] [CrossRef]
- Middleton, L.; Kennon, N.; Dunne, D. Metallographic method for nitinol. Metallography 1985, 18, 51–59. [Google Scholar] [CrossRef]
- Miura, F.; Mogi, M.; Ohura, Y.; Hamanaka, H. The super-elastic property of the Japanese NiTi alloy wire for use in orthodontics. Am. J. Orthod. Dentofac. Orthop. 1986, 90, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Suárez, C.; Vilar, T.; Gil, J.; Sevilla, P. In vitro evaluation of surface topographic changes and nickel release of lingual orthodontic archwires. J. Mater. Sci. Mater. Med. 2010, 21, 675–683. [Google Scholar] [CrossRef] [Green Version]
- Faus-Llácer, V.; Hamoud-Kharrat, N.; Ramos, M.T.M.; Faus-Matoses, I.; Zubizarreta-Macho, Á.; Sánchez, C.R.; Faus-Matoses, V. Influence of the Geometrical Cross-Section Design on the Dynamic Cyclic Fatigue Resistance of NiTi Endodontic Rotary Files—An In Vitro Study. J. Clin. Med. 2021, 10, 4713. [Google Scholar] [CrossRef] [PubMed]
- Gutmann, J.L.; Gao, Y. Alteration in the inherent metallic and surface properties of nickel-titanium root canal instruments to enhance performance, durability and safety: A focused review. Int. Endod. J. 2012, 45, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Antony, A.; Varghese, N.O.; Pillai, R.; Sujathen, U.-N.; Sainudeen, S.; Paul, S. Resistance to torsional failure and cyclic fatigue resistance of ProTaper Next, WaveOne, and Mtwo files in continuous and reciprocating motion: An in vitro study. J. Conserv. Dent. 2016, 19, 225–230. [Google Scholar] [CrossRef]
- Martins, J.N.R.; Silva, E.J.N.L.; Marques, D.; Belladonna, F.; Simões-Carvalho, M.; Vieira, V.T.L.; Antunes, H.S.; Fernandes, F.M.B.; Versiani, M.A. Design, metallurgical features, mechanical performance and canal preparation of six reciprocating instruments. Int. Endod. J. 2021, 54, 1623–1637. [Google Scholar] [CrossRef]
- Ramezannejad, A.; Xu, W.; Qian, M. Ni-free superelastic titanium alloys for medical and dental applications. In Titanium in Medical and Dental Applications; Francis, H., Qian, F.M., Eds.; Woodhead Publishing Series in Biomaterials; Woodhead Pub-lishing: London, UK, 2018; pp. 591–611. ISBN 9780128124567. [Google Scholar] [CrossRef]
- Bellini, H.; Moyano, J.; Gil, J.; Puigdollers, A. Comparison of the superelasticity of different nickel–titanium orthodontic archwires and the loss of their properties by heat treatment. J. Mater. Sci. Mater. Med. 2016, 27, 158. [Google Scholar] [CrossRef] [Green Version]
- Arciniegas, M.; Gaillard, Y.; Pena, J.; Manero, J.M.; Gil, F.J. Thermoelastic phase transformation in TiNi alloys under cyclic instrumented indentation. Intermetallics 2009, 17, 784–791. [Google Scholar] [CrossRef]
- Pastor, F.; Rodríguez, J.C.; Barrera, J.M.; García-Menocal, J.A.D.; Brizuela, A.; Puigdollers, A.; Espinar, E.; Gil, J. Effect of Fluoride Content of Mouthwashes on Superelastic Properties of NiTi Orthodontic Archwires. Materials 2022, 15, 6592. [Google Scholar] [CrossRef]
- Gil, F.J.; Planell, J.A. Shape memory alloys for medical applications. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1998, 212, 473–488. [Google Scholar] [CrossRef]
- Moghaddam, N.S.; Saedi, S.; Amerinatanzi, A.; Hinojos, A.; Ramazani, A.; Kundin, J.; Mills, M.J.; Karaca, H.; Elahinia, M. Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment. Sci. Rep. 2019, 9, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, Y.; Wang, J.; Su, X.; Guo, X.; Moumni, Z.; Zhang, W. Effect of plasticity on superelasticity and hysteretic dissipation of NiTi shape memory alloy. Mater. Today Commun. 2020, 24, 101137. [Google Scholar] [CrossRef]
- Dutkiewicz, J.; Rogal, Ł.; Kalita, D.; Węglowski, M.; Błacha, S.; Berent, K.; Czeppe, T.; Antolak-Dudka, A.; Durejko, T.; Czujko, T. Superelastic Effect in NiTi Alloys Manufactured Using Electron Beam and Focused Laser Rapid Manufacturing Methods. J. Mater. Eng. Perform. 2020, 29, 4463–4473. [Google Scholar] [CrossRef]
- Guilemany, J.M.; Gil, F.J. Determination of the relationship between Ms and As transformation temperatures and chemical composition for Cu-Al-Zn-Mn shape memory alloys. Mater. Lett. 1990, 10, 145–148. [Google Scholar] [CrossRef]
- Gil, F.X.; Manero, J.M.; Planell, J.A. Relevant aspects in the clinical applications of NiTi shape memory alloys. J. Mater. Sci. Mater. Med. 1996, 7, 403–406. [Google Scholar] [CrossRef]
- Plotino, G.; Grande, N.M.; Cordaro, M.; Testarelli, L.; Gambarini, G. A Review of Cyclic Fatigue Testing of Nickel-Titanium Rotary Instruments. J. Endod. 2009, 35, 1469–1476. [Google Scholar] [CrossRef]
Angle | Cycles (s) |
---|---|
30 | 1250 |
45 | 760 |
70 | 250 |
Angle | Cycles (s) | Ms | Mf | As | Af | HA–M (J/g) | HM–A (J/g) |
---|---|---|---|---|---|---|---|
30 | 0 | 15 | 5 | −3 | 7 | 4.342 | −4.312 |
30 | 60 | 16 | 6 | −4 | 9 | 4.001 | −3.987 |
30 | 150 | 16 | 7 | −1 | 10 | 3.275 | −3.128 |
30 | 200 | 17 | 9 | 0 | 11 | 2.908 | −2.897 |
45 | 0 | 15 | 5 | −3 | 7 | 4.342 | −4.312 |
45 | 60 | 16 | 3 | −5 | 9 | 3.765 | −3.234 |
45 | 150 | 17 | 1 | −4 | 12 | 2.001 | −2.289 |
45 | 200 | 20 | −5 | −9 | 14 | 1.621 | −1.713 |
70 | 0 | 15 | 5 | −3 | 7 | 4.342 | −4.312 |
70 | 60 | 18 | 4 | −4 | 10 | 2.009 | −2.347 |
70 | 150 | 20 | 3 | −2 | 15 | 1.512 | −1.298 |
70 | 200 | 23 | 2 | 1 | 19 | 1.110 | −1.112 |
Angle | Temperature (°C) | Ms | Mf | As | Af | HA–M (J/g) | HM–A (J/g) |
---|---|---|---|---|---|---|---|
30 | 300 | - | - | - | - | - | - |
30 | 400 | 46 | 26 | 4 | 43 | 4.001 | −3.987 |
30 | 500 | 15 | 3 | −3 | 10 | 2.178 | −2.136 |
45 | 300 | - | - | - | - | - | - |
45 | 400 | 37 | 16 | 4 | 33 | 2.934 | −2.923 |
45 | 500 | 16 | 3 | −5 | 9 | 4.365 | −4.234 |
70 | 300 | ||||||
70 | 400 | 28 | 0 | −3 | 24 | 1.621 | −1.713 |
70 | 500 | 14 | 6 | −2 | 7 | 4.333 | −4.322 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, P.; Vidi, B.; Mena-Alvarez, J.; Gil, J.; Rico, C.; Aragoneses, J.M. Effect of Stabilized Martensite on the Long-Term Performance of Superelastic NiTi Endodontic Files. Materials 2023, 16, 4089. https://doi.org/10.3390/ma16114089
Sánchez P, Vidi B, Mena-Alvarez J, Gil J, Rico C, Aragoneses JM. Effect of Stabilized Martensite on the Long-Term Performance of Superelastic NiTi Endodontic Files. Materials. 2023; 16(11):4089. https://doi.org/10.3390/ma16114089
Chicago/Turabian StyleSánchez, Patricia, Benedetta Vidi, Jesús Mena-Alvarez, Javier Gil, Cristina Rico, and Juan Manuel Aragoneses. 2023. "Effect of Stabilized Martensite on the Long-Term Performance of Superelastic NiTi Endodontic Files" Materials 16, no. 11: 4089. https://doi.org/10.3390/ma16114089
APA StyleSánchez, P., Vidi, B., Mena-Alvarez, J., Gil, J., Rico, C., & Aragoneses, J. M. (2023). Effect of Stabilized Martensite on the Long-Term Performance of Superelastic NiTi Endodontic Files. Materials, 16(11), 4089. https://doi.org/10.3390/ma16114089