Black Tea Waste as Green Adsorbent for Nitrate Removal from Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Adsorbent
2.3. Preparation of the Samples Artificially Contaminated with NO3− Ions
2.4. Adsorbent Characterization
2.5. Adsorption Equilibrium Studies
3. Results and Discussion
3.1. Characterization of the Adsorbents
3.1.1. SEM Analysis
Energy Dispersed X-ray (EDX) Measurements
3.1.2. ATR-FTIR Analysis
3.2. Thermogravimetric Analysis: Heat Treatment of Bio-Sorbents and the Adsorption Performance
3.3. Adsorption Performance
3.3.1. Effect of the Initial Concentration
3.3.2. Effect of Initial pH
3.3.3. Effect of Temperature
3.4. Regeneration Experiments
3.5. Isotherm Analysis
3.6. Thermodynamic Analysis
Environmental Significance
3.7. Comparison of the Maximum Adsorption Capacity of Various Bio-Adsorbents for Nitrates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choudhary, M.; Kumar, R.; Neogi, S. Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water. J. Hazard. Mater. 2020, 392, 122441. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Nhung, N.T.; Ding, Y.; Chen, H.; He, C.; Wang, X.; Fujita, T. Chestnut Shell-Activated Carbon Mixed with Pyrolytic Snail Shells for Methylene Blue Adsorption. Materials 2022, 15, 8227. [Google Scholar] [CrossRef]
- Pathak, U.; Jhunjhunwala, A.; Roy, A.; Das, P.; Kumar, T.; Mandal, T. Efficacy of spent tea waste as chemically impregnated adsorbent involving ortho-phosphoric and sulphuric acid for abatement of aqueous phenol—Isotherm, kinetics and artificial neural network modelling. Environ. Sci. Pollut. Res. 2020, 27, 20629–20647. [Google Scholar] [CrossRef]
- Loffredo, E. Recent Advances on Innovative Materials from Biowaste Recycling for the Removal of Environmental Estrogens from Water and Soil. Materials 2022, 15, 1894. [Google Scholar] [CrossRef]
- Zuorro, A.; Santarelli, M.L.; Lavecchia, R. Tea Waste: A New Adsorbent for the Removal of Reactive Dyes from Textile Wastewater. Adv. Mater. Res. 2013, 803, 26–29. [Google Scholar] [CrossRef]
- Liu, Q.; Deng, W.-Y.; Zhang, L.-Y.; Liu, C.-X.; Jie, W.-W.; Su, R.-X.; Zhou, B.; Lu, L.-M.; Liu, S.-W.; Huang, X.-G. Modified Bamboo Charcoal as a Bifunctional Material for Methylene Blue Removal. Materials 2023, 16, 1528. [Google Scholar] [CrossRef] [PubMed]
- Patil, C.S.; Gunjal, D.B.; Naik, V.M.; Harale, N.S.; Jagadale, S.D.; Kadam, A.N.; Patil, P.S.; Kolekar, G.B.; Gore, A.H. Waste tea residue as a low cost adsorbent for removal of hydralazine hydrochloride pharmaceutical pollutant from aqueous media: An environmental remediation. J. Clean. Prod. 2019, 206, 407–418. [Google Scholar] [CrossRef]
- Khan, A.; Wang, X.; Gul, K.; Khuda, F.; Aly, Z.; Elseman, A.M. Microwave-assisted spent black tea leaves as cost-effective and powerful green adsorbent for the efficient removal of Eriochrome black T from aqueous solutions. Egypt. J. Basic Appl. Sci. 2018, 5, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Vithalkar, S.; Jugade, R.M.; Saravanan, D. Adsorption of brilliant green dye by used-tea-powder: Equilibrium, kinetics and thermodynamics studies. AQUA Water Infrastruct. Ecosyst. Soc. 2022, 71, 1148–1158. [Google Scholar] [CrossRef]
- Sikdar, D.; Goswami, S.; Das, P. Activated carbonaceous materials from tea waste and its removal capacity of indigo carmine present in solution: Synthesis, batch and optimization study. Sustain. Environ. Res. 2020, 30, 30. [Google Scholar] [CrossRef]
- Villen-Guzman, M.; Cerrillo-Gonzalez, M.M.; Paz-Garcia, J.M.; Rodriguez-Maroto, J.M.; Arhoun, B. Valorization of lemon peel waste as biosorbent for the simultaneous removal of nickel and cadmium from industrial effluents. Environ. Technol. Innov. 2021, 21, 101380. [Google Scholar] [CrossRef]
- To, P.K.; Ma, H.T.; Nguyen Hoang, L.; Nguyen, T.T. Nitrate Removal from Waste-Water Using Silica Nanoparticles. J. Chem. 2020, 2020, 8861423. [Google Scholar] [CrossRef]
- Ba, J.; Gao, F.; Peng, C.; Li, J. Characteristics of nitrate and heavy metals pollution in Huixian Wetland and its health risk assessment. Alex. Eng. J. 2022, 61, 9031–9042. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, N.; Feng, Z.; Feng, C.; Deng, Y. Treatment of nitrate containing wastewater by adsorption process using polypyrrole-modified plastic-carbon: Characteristic and mechanism. Chemosphere 2022, 297, 134107. [Google Scholar] [CrossRef]
- Qiao, H.; Mei, L.; Chen, G.; Liu, H.; Peng, C.; Ke, F.; Hou, R.; Wan, X.; Cai, H. Adsorption of nitrate and phosphate from aqueous solution using amine cross-linked tea wastes. Appl. Surf. Sci. 2019, 483, 114–122. [Google Scholar] [CrossRef]
- Villabona-Ortíz, A.; Ortega-Toro, R.; Tejada-Tovar, C. Selective and Competitive Adsorption of Anions in Solution on Porous Adsorbent from Zea mays Steams: Kinetic and Equilibrium Study. Water 2022, 14, 2906. [Google Scholar] [CrossRef]
- Nazir, M.A.; Yasar, A.; Bashir, M.A.; Siyal, S.H.; Najam, T.; Javed, M.S.; Ahmad, K.; Hussain, S.; Anjum, S.; Hussain, E.; et al. Quality assessment of the noncarbonated-bottled drinking water: Comparison of their treatment techniques. Int. J. Environ. Anal. Chem. 2022, 102, 8195–8206. [Google Scholar] [CrossRef]
- Li, H.; Budarin, V.L.; Clark, J.H.; North, M.; Wu, X. Rapid and efficient adsorption of methylene blue dye from aqueous solution by hierarchically porous, activated starbons®: Mechanism and porosity dependence. J. Hazard. Mater. 2022, 436, 129174. [Google Scholar] [CrossRef] [PubMed]
- Stjepanović, M.; Velić, N.; Habuda-Stanić, M. Modified Hazelnut Shells as a Novel Adsorbent for the Removal of Nitrate from Wastewater. Water 2022, 14, 816. [Google Scholar] [CrossRef]
- Nazir, M.A.; Najam, T.; Shahzad, K.; Wattoo, M.A.; Hussain, T.; Tufail, M.K.; Shah, S.S.A.; Rehman, A.U. Heterointerface engineering of water stable ZIF-8@ZIF-67: Adsorption of rhodamine B from water. Surf. Interfaces 2022, 34, 102324. [Google Scholar] [CrossRef]
- Jamshaid, M.; Nazir, M.A.; Najam, T.; Shah, S.S.A.; Khan, H.M.; Rehman, A.U. Facile synthesis of Yb3+-Zn2+ substituted M type hexaferrites: Structural, electric and photocatalytic properties under visible light for methylene blue removal. Chem. Phys. Lett. 2022, 805, 139939. [Google Scholar] [CrossRef]
- Hu, W.; Yang, L.; Shao, P.; Shi, H.; Chang, Z.; Fang, D.; Wei, Y.; Feng, Y.; Huang, Y.; Yu, K.; et al. Proton Self-Enhanced Hydroxyl-Enriched Cerium Oxide for Effective Arsenic Extraction from Strongly Acidic Wastewater. Environ. Sci. Technol. 2022, 56, 10412–10422. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Gao, Z.; Liu, T.; Huang, M.; Liu, G.; Feng, Y.; Shao, P.; Luo, X. Direct Electrochemical Leaching Method for High-Purity Lithium Recovery from Spent Lithium Batteries. Environ. Sci. Technol. 2023, 57, 4591–4597. [Google Scholar] [CrossRef]
- Melo, A.L.F.C.; Carneiro, M.T.; Nascimento, A.M.S.S.; Morais, A.I.S.; Bezerra, R.D.S.; Viana, B.C.; Osajima, J.A.; Silva-Filho, E.C. Biochar Obtained from Caryocar brasiliense Endocarp for Removal of Dyes from the Aqueous Medium. Materials 2022, 15, 9076. [Google Scholar] [CrossRef]
- Wu, J.; Annath, H.; Chen, H.; Mangwandi, C. Upcycling tea waste particles into magnetic adsorbent materials for removal of Cr(VI) from aqueous solutions. Particuology 2023, 80, 115–126. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X. Adsorption and Desorption of Nickel(II) Ions from Aqueous Solution by a Lignocellulose/Montmorillonite Nanocomposite. PLoS ONE 2015, 10, e0117077. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Siddique, M.; Chen, W.; Han, Z.; Khan, R.; Bilal, M.; Waheed, U.; Shahzadi, I. Promising Low-Cost Adsorbent from Waste Green Tea Leaves for Phenol Removal in Aqueous Solution. Int. J. Environ. Res. Public Health 2022, 19, 6396. [Google Scholar] [CrossRef]
- Gao, Y.; Bao, S.; Zhang, L.; Zhang, L. Nitrate removal by using chitosan/zeolite molecular sieves composite at low temperature: Characterization, mechanism, and regeneration studies. Desalin Water Treat 2020, 203, 160–171. [Google Scholar] [CrossRef]
- Zhou, H.; Tan, Y.; Gao, W.; Zhang, Y.; Yang, Y. Selective nitrate removal from aqueous solutions by a hydrotalcite-like absorbent FeMgMn-LDH. Sci. Rep. 2020, 10, 16126. [Google Scholar] [CrossRef]
- Quesada, H.B.; Cusioli, L.F.; de O Bezerra, C.; Baptista, A.T.A.; Nishi, L.; Gomes, R.G.; Bergamasco, R. Acetaminophen adsorption using a low-cost adsorbent prepared from modified residues of Moringa oleifera Lam. seed husks. J. Chem. Technol. Biotechnol. 2019, 94, 3147–3157. [Google Scholar] [CrossRef]
- Nehaba, S.; Hashim, R.; Alsultani, A.; Omran, A.; Muttaleb, A. Evaluation of the Efficiency of Tea Waste Powder to Remove the Safranin O dye Compared to the Activated Carbon as Adsorbent. Orient. J. Chem. 2019, 35, 1201–1207. [Google Scholar] [CrossRef]
- Monteiro, M.I.C.; Ferreira, F.N.; de Oliveira, N.M.M.; Ávila, A.K. Simplified version of the sodium salicylate method for analysis of nitrate in drinking waters. Anal. Chim. Acta 2003, 477, 125–129. [Google Scholar] [CrossRef]
- Soiklom, S.; Petchpoung, K.; Siri-Anusornsak, W. Comparison of Sample Pretreatment and Analytical Method for Nitrate Determination in Vegetables. Trends Sci. 2021, 18, 19. [Google Scholar] [CrossRef]
- Wijeyawardana, P.; Nanayakkara, N.; Gunasekara, C.; Karunarathna, A.; Law, D.; Pramanik, B.K. Removal of Cu, Pb and Zn from stormwater using an industrially manufactured sawdust and paddy husk derived biochar. Environ. Technol. Innov. 2022, 28, 102640. [Google Scholar] [CrossRef]
- Suman, S.; Panwar, D.S.; Gautam, S. Surface morphology properties of biochars obtained from different biomass waste. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 1007–1012. [Google Scholar] [CrossRef]
- Chintala, R.; Mollinedo, J.; Schumacher, T.E.; Papiernik, S.K.; Malo, D.D.; Clay, D.E.; Kumar, S.; Gulbrandson, D.W. Nitrate sorption and desorption in biochars from fast pyrolysis. Microporous Mesoporous Mater. 2013, 179, 250–257. [Google Scholar] [CrossRef]
- Akgül, G.; Ateş, A.; Yaşar, G.; Hatipoğlu, H. Production and characterisation of biochar from tea waste and its nickel removal capacity from aqueous solutions. Prog. Ind. Ecol. Int. J. 2017, 11, 105–117. [Google Scholar] [CrossRef]
- Oprescu, E.-E.; Enascuta, E.C.; Vasilievici, G.; Banu, N.D.; Banu, I. Preparation of magnetic biochar for nitrate removal from aqueous solutions. React. Kinet. Mech. Catal. 2022, 135, 2629–2642. [Google Scholar] [CrossRef]
- Luo, S.; Li, X.; Chen, L.; Chen, J.; Wan, Y.; Liu, C. Layer-by-layer strategy for adsorption capacity fattening of endophytic bacterial biomass for highly effective removal of heavy metals. Chem. Eng. J. 2014, 239, 312–321. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Çelebi, H.; Gök, G.; Gök, O. Adsorption capability of brewed tea waste in waters containing toxic lead(II), cadmium (II), nickel (II), and zinc(II) heavy metal ions. Sci. Rep. 2020, 10, 17570. [Google Scholar] [CrossRef] [PubMed]
- Bąk, J.; Thomas, P.; Kołodyńska, D. Chitosan-Modified Biochars to Advance Research on Heavy Metal Ion Removal: Roles, Mechanism and Perspectives. Materials 2022, 15, 6108. [Google Scholar] [CrossRef] [PubMed]
- Skorupa, A.; Worwąg, M.; Kowalczyk, M. Coffee Industry and Ways of Using By-Products as Bioadsorbents for Removal of Pollutants. Water 2023, 15, 6108. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Wang, J. A critical review of various adsorbents for selective removal of nitrate from water: Structure, performance and mechanism. Chemosphere 2022, 291, 132728. [Google Scholar] [CrossRef]
- Hu, Q.; Chen, N.; Feng, C.; Hu, W.; Zhang, J.; Liu, H.; He, Q. Nitrate removal from aqueous solution using granular chitosan-Fe(III)–Al(III) complex: Kinetic, isotherm and regeneration studies. J. Taiwan Inst. Chem. Eng. 2016, 63, 216–225. [Google Scholar] [CrossRef]
- Kalaruban, M.; Loganathan, P.; Shim, W.G.; Kandasamy, J.; Ngo, H.H.; Vigneswaran, S. Enhanced removal of nitrate from water using amine-grafted agricultural wastes. Sci. Total Environ. 2016, 565, 503–510. [Google Scholar] [CrossRef]
- Stjepanović, M.; Velić, N.; Habuda-Stanić, M. Modified Grape Seeds: A Promising Alternative for Nitrate Removal from Water. Materials 2021, 14, 4791. [Google Scholar] [CrossRef]
- Keränen, A.; Leiviskä, T.; Hormi, O.; Tanskanen, J. Removal of nitrate by modified pine sawdust: Effects of temperature and co-existing anions. J. Environ. Manag. 2015, 147, 46–54. [Google Scholar] [CrossRef]
Langmuir | qe = Langmuir linearized form: = + | qe = adsorption capacity determined at equilibrium (mg·g−1); qm = maximum adsorption capacity (mg·g−1); KL = Langmuir constant (L·mg−1) |
Freundlich | qe = KF · Ce 1/n Freundlich linearized form: ln qe = ln KF + ln Ce | KF = adsorption capacity; n = intensity of adsorption; qe (mg/g) = the equilibrium sorption concentration of nitrate per gram of adsorbent; Ce(mg/L) = the concentration of the solute in solution at equilibrium |
Temkin | ·) | BT (heat of adsorption in J·mol−1) = R·T/bT; AT = equilibrium-binding constant of the Temkin isotherm in L·g−1; bT = the Temkin isotherm constant; R = universal gas constant (8.314 J·mol−1 K−1); T = temperature (298 K) |
Separation Factor (RL) | Type of Isotherms |
---|---|
RL > 1 | Unfavorable |
RL = 1 | Linear |
0 > RL < 1 | Favorable |
RL = 0 | Irreversible |
Adsorbent | Langmuir Model | Freundlich Model | Temkin Model |
---|---|---|---|
UBT | R2 = 0.9002 qm = 7.9365 mg/g KL = 0.17357 L/mg ΔG = 4.3386 kJ/mol RL = 0.0188 (Ci = 300 mg/L) | R2 = 0.9136 KF = 2.839 mg/g 1/nF = 0.5853 | R2 = 0.8861 KT = 2.9921 L/g bT = 2.456 kJ/mol |
UBT-TT | R2 = 0.8276 qm = 15.5763 mg/g KL = 0.06217 L/mg ΔG = 6.882 kJ/mol RL = 0.05 (Ci = 300 mg/L) | R2 = 0.9506 KF = 2.601 mg/g 1/nF = 0.3957 | R2 = 0.9211 KT = 0.0527 L/g bT = 0.3063 kJ/mol |
T (K) | ΔG (kJ/mol) | ΔS (J/mol·K) | ΔH (kJ/mol) |
---|---|---|---|
288 | 4.21 | −0.57 | −0.39 |
293 | 4.59 | ||
298 | 4.92 | ||
313 | 5.24 |
T (K) | ΔG (kJ/mol) | ΔS (J/mol·K) | ΔH (kJ/mol) |
---|---|---|---|
288 | 2.58 | −0.73 | −0.51 |
293 | 2.79 | ||
298 | 2.93 | ||
313 | 3.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bondarev, A.; Popovici, D.R.; Călin, C.; Mihai, S.; Sȋrbu, E.-E.; Doukeh, R. Black Tea Waste as Green Adsorbent for Nitrate Removal from Aqueous Solutions. Materials 2023, 16, 4285. https://doi.org/10.3390/ma16124285
Bondarev A, Popovici DR, Călin C, Mihai S, Sȋrbu E-E, Doukeh R. Black Tea Waste as Green Adsorbent for Nitrate Removal from Aqueous Solutions. Materials. 2023; 16(12):4285. https://doi.org/10.3390/ma16124285
Chicago/Turabian StyleBondarev, Andreea, Daniela Roxana Popovici, Cătalina Călin, Sonia Mihai, Elena-Emilia Sȋrbu, and Rami Doukeh. 2023. "Black Tea Waste as Green Adsorbent for Nitrate Removal from Aqueous Solutions" Materials 16, no. 12: 4285. https://doi.org/10.3390/ma16124285