Tailoring SnO2 Defect States and Structure: Reviewing Bottom-Up Approaches to Control Size, Morphology, Electronic and Electrochemical Properties for Application in Batteries
Abstract
1. Introduction
2. Stabilization of SnO2 Polymorphs
3. Electronic Structure of SnO2
3.1. Bandgap Engineering in SnO2
3.2. Point-Defect Engineering in SnO2
4. Synthesis of SnO2 Nanostructures: Thin Films, Nanoparticles and Nanocomposites
4.1. Thin-Film Growth of SnO2: Role of Substrate-Induced Strain in the Stabilization of High-Pressure Phases of SnO2
Deposition Technique | Target/Precursor | Oxygen Supply | Substrate | Conditions | Structure | Ref. |
---|---|---|---|---|---|---|
Physical deposition methods | ||||||
Pulsed laser deposition (PLD) | Rutile SnO2 | O2 | Si [100] | 308 nm 10 Hz 20–400 °C <10−5 Pa | Amorphous + Tetragonal rutile | [116] |
PLD | Sintered rutile SnO2 | Target | Si [001] | 532 nm 5 pulses/s 20–1150 °C 4 h | Tetragonal rutile + Orthorhombic | [54] |
PLD | Rutile SnO2 | Target | Si [100] | 248 nm 10 Hz 320 °C 3 × 10−2 Pa | Tetragonal rutile + Orthorhombic | [53] |
Direct-current (DC) sputtering | Tin metal plate | O2 | Si [100] | Ar gas 40–60 W 5 × 10−5 Pa 550 °C | Tetragonal rutile | [128] |
DC sputtering | Rutile SnO2 | Target | SiO2 | N2-Ar gas 15 W 5 × 10−1 Pa 20–500 °C | Tetragonal rutile + cubic | [119] |
DC sputtering | Tin metallic disk | O2 | Si [100] | Ar gas 60 W 40 min 1 × 10−1 Pa 148–243 °C | Tetragonal rutile + Orthorhombic | [118] |
DC sputtering | Sb2O3 doped rutile SnO2 | Target | Si [100] | N2-Ag gas 60 W 4 × 10−1 Pa 300 °C | Cubic | [44] |
Radio-frequency (RF) sputtering | Pure metallic Sn | O2 | SiO2 | Ar gas 25 W 2 h | Tetragonal rutile | [129] |
RF sputtering | Rutile SnO2 | Target | Sapphire (0001) | 50 W 6.67 × 10−4 Pa 600 °C | Tetragonal rutile + Orthorhombic | [117] |
RF sputtering | Rutile SnO2 | Target | Si/SiO2 + MgO [001] | N2-NH3 gas 25 to 75 W 0.67 Pa 400 °C | Cubic | [61] |
Chemical deposition methods | ||||||
Plasma-enhanced atomic-layer deposition (PEALD) | SnCl4 | O2 | Si [100] | Ar gas 100 to 400 W 400 Pa 150–350 °C | Tetragonal rutile | [130] |
PEALD | Dibutyl tin acetate | O2 | yttria-stabilized zirconia | Ar gas 100 W 2.67 Pa 300 °C | Orthorhombic | [55] |
PEALD | dimethylamino-2-methyl-2-propoxy-tin(II) | O2 or H2O | Si | N2 gas 100–300 °C | Tetragonal rutile + orthorhombic | [56] |
Combustion vapor deposition | tin(II) 2-ethylhexanoate in absolute ethanol | Precursor | SiO2 | 20 min 850 °C | Tetragonal rutile | [131] |
Aerosol-assisted chemical vapor deposition | MgxSn1−xO2 in ethanol | Precursor | Glass | Ar gas 30 min 400 °C | Tetragonal rutile | [132] |
Metal–organic chemical vapor deposition (MOCVD) | Dibutyl tin acetate | O2 | Sapphire (0001) | N2 gas 2667 Pa 600–700 °C 30–100 sccm | Tetragonal rutile | [126] |
MOCVD | Tetraethyl tin | O2 | MgF2 (001) | N2 gas 50 sccm 2 h 540–660 °C | Tetragonal rutile | [127] |
MOCVD | Tetraethyl tin and trimethylstibine | O2 | 6H-SiC (0001) | N2 gas 40 sccm 2 h 600 °C | Orthorhombic | [124] |
MOCVD | Dibutyl tin acetate | O2 | yttria-stabilized zirconia (100) | N2 gas 30 sccm 500–600 °C | Orthorhombic | [125] |
Mist chemical vapor deposition | SnCl2·2H2O in methanol | Precursor | Si | 1.5 MHz N2 gas 1000 sccm 250–300 °C | Tetragonal rutile | [57] |
MCVD | SnCl2·2H2O in acetone | Precursor | Si | 1.5 MHz N2 gas 1000 sccm 350–400 °C | Orthorhombic | [57] |
4.2. Hydrothermal Synthesis of SnO2 Nanomaterials
5. Prospects of SnO2 Nanomaterials as Anode Materials in LiB: Correlating Their Morphology Obtained from Synthesis Routes to Their Electrochemical Performance
Label | Chemicals | Sample Preparation | Shape and Size | Potential Window vs. Li/Li+ (V) | Initial Energy Density (mAhg−1) | CE/CR | Energy Capacity (mAhg−1) | Ref. |
---|---|---|---|---|---|---|---|---|
SnO2 | SnCl4·5H2O, NH3, HCl in water | Autoclave at 160 °C for 30 min | Nanospheres 6–21 | 0.01–2.0 | Discharge: 1196.6 Charge: 520 (100 mAg−1) | CE = 42% first cycle CE > 98% after 10 cycles CR = 22.8% 50th cycle | 217.0 mAhg−1 at 100 mAg−1 after 50 cycles | [149] |
SnO2 | SnCl4·5H2O, citric acid in water | Microwave at 2.4 GHz under 160 °C for 30 min | Nanosheets <10 nm thick | 0.005–2.0 | Discharge: 1350 Charge: 840 (100 mAg−1) | CE = 62% first cycle and >97% from the 10th cycle CR = 19.1% 50th cycle | 257.8 mAhg−1 at 100 mAg−1 after 50 cycles | [155] |
SnO2 | Tin(IV) isopropoxide in water | Hydrothermal in air at reflux for 30 min then calcination at 400 °C for 1 h | Nanospheres 9 nm agglomerated in um blocks | 0.01–1.5 | Discharge: 674.5 (782 mAg−1) | CR = 81.9% 100th (782 mAg−1) | 500 mAhg−1 at 782 mAg−1 100th cycle | [150] |
SnO2 | SnCl4·5H2O, NaOH, oleic acid in water | Hydrothermal, 180 °C for 24 h then annealed for 24 h at 500 °C | Flowerlike nanorod bundles 30 nm | 0–2.5 | Discharge: 1673 Charge: 815 (78 mAg−1) | CE = 49% 1st cycle CR = 41.5% 40th cycle | 694 mAhg−1 at 78.2 mAg−1 after 40 cycles | [158] |
SnO2 | SnCl4·5H2O, NaOH in water | Hydrothermal, 200 °C for 24 h | Nanorods of 60 by 670 nm | 0.005–2.5 | Discharge: 1918 Charge: 1128 (78.1 mAg−1) | CE = 59% 1st cycle CR = 57.5% after 100th cycle | 645 mAhg−1 at 78.2 mAg−1 after 100 cycles | [159] |
SnO2 | SnCl2·2H2O in ethanol | Autoclave 150 °C, 10 h then heat treated at 360 °C for 10 min | Micrometric aggregates | 0.01–3.0 | Discharge: 768.1 Charge: 414.8 (100 mAg−1) | CE = 54.0% 1st cycle CE = 93.2% 3rd cycle CR = 29.9% 100th cycle at 200 mAg−1 | 244.8 mAhg−1 at 200 mAg−1 after 100 cycles | [165] |
SnO2-CNTH | SnCl2·2H2O, CNTH in ethanol | Autoclave 150 °C 10 h then heat treated at 360 °C for 10 min | Micrometric hairball shape containing SnO2 nanospheres (5–10 nm) and CNTH (30 nm diameter) | 0.01–3.0 | Discharge: 2255.2 Charge: 1098.3 (100 mAg−1) | CE = 48.7% 1st cycle CE = 88.8% 3rd cycle CR = 74.2% 100th cycle at 200 mAg−1 | 809.2 mAhg−1 at 200 mAg−1 after 100 cycles | [165] |
SnO2 | Sucrose, acetic acid, tin acetate in water | 180 °C to evaporate then 300 °C to completely dry then calcinated at 450 °C for 3 h | Nanospheres of 15 nm | 0.01–3.0 | Discharge: 1139 Charge: 679 (50 mAg−1) | CE = 40.4% 1st cycle | 764 mAhg−1 at 50 mAg−1 after 10 cycles | [167] |
Fe-doped SnO2 | Iron(II) gluconate·2H2O sucrose, acetic acid, tin acetate in water | 180 °C to evaporate then 300 °C to completely dry then calcinated at 450 °C for 3 h | Nanospheres of 7–8 nm | 0.01–3.0 | Discharge: 1726 Charge: 1241 (50 mAg−1) | CE = 28.1% 1st cycle | 1519 mAhg−1 at 50 mAg−1 after 10 cycles | [167] |
SnO2 | Tin acetate and sucrose in water | 180 °C to evaporate then 450 °C for 3 h | Nanospheres of 12.5 nm | 0.01–3.0 | Discharge: ~850 Charge: ~750 | CE = 92.7% 50th cycle | 242 mAhg−1 at 50 mAg−1 after 50 cycles | [168] |
Co-doped SnO2 | Cobalt(II) gluconate, tin acetate and sucrose in water | 180 °C to evaporate then 450 °C for 3 h | Nanospheres of 6.7–7.7–10.1 nm | 0.01–3.0 | Discharge: ~1200 Charge: ~1100 | CE = 70.4% 1st cycle CE = 94.6–94.9% 50th cycle | 493 mAhg−1 at 100 mAg−1 after 50 cycles 435.8 mAhg−1 at 50 mAg−1 after 50 cycles | [168] |
Co-doped SnO2 with C coating | Cobalt(II) gluconate, tin acetate, sucrose and glucose in water | 180 °C to evaporate then 450 °C for 3 h. Heat up again at 180 °C for 13 h | Nanospheres of ~10 nm embedded in carbon matrix | 0.01–3.0 | Discharge: ~1900 Charge: ~1700 | CE = 74.2–74.4% 1st cycle CE = 96.0–97.2% 50th cycle | 1000–1200 mAhg−1 at 50 mAg−1 after 50 cycles | [168] |
SnO2 | Na2SnO3·3H2O, urea in water | 170 °C for 36 h then calcinated at 500 °C for 4 h | Shallow nanospheres of 500 nm and 38 nm thick | 0.01–3.0 | Discharge: 1203 | CE = 61.6% 1st cycle | 87 mAhg−1 at 100 mAg−1 after 300 cycles | [169] |
Ni-doped SnO2 | Na2SnO3·3H2O, urea, NiNO3 in ethanol/water | 170 °C for 36 h then calcinated at 500 °C for 4 h | Shallow nanospheres of 500 nm and 20 nm thick | 0.01–3.0 | Discharge: 1463–1581 | CE = 58.8–62.1% 1st cycle | 542 mAhg−1 at 100 mAg−1 after 300 cycles | [169] |
SnO2 | SnO2 nanopowder | vapor deposition process at 1050 °C for 1 h 15 mbar | Nanowires of lengths 50 nm and 500 nm | 0.005–2.5 | Discharge: 612 Charge: 267 (1000 mAg−1) | CE = 43.6% first cycle | 148 mAhg−1 at 1000 mAg−1 after 30 cycles | [170] |
SnO2-Fe2O3 | SnO2 nanopowder and FeCl3·6H2O | vapor deposition process at 1050 °C for 1 h 15 mbar | Nanowires with Fe2O3 nanoarrays | 0.005–2.5 | Discharge: 1167 Charge: 809 (1000 mAg−1) | CE = 69.4% first cycle | 207 mAhg−1 at 1000 mAg−1 after 30 cycles | [170] |
SnO2-graphene oxide- | SnCl2 and graphene oxide | Autoclave 220 °C 24 h | 5–10 nm SnO2 nanoparticles | 0.01–3.0 | Discharge: 810 (100 mAg−1) | CR = 73.8% after 100 cycles | 597 mAhg−1 at 100 mAg−1 after 100 cycles | [171] |
SnO2-graphene oxide- Co3O4 | SnCl2 and graphene oxide and Co(CH3COO)2 | Autoclave 220 °C 24 h then 80 °C for 8 h | 5–10 nm SnO2 and Co3O4 nanoparticles | 0.01–3.0 | Discharge: 1038 (1000 mAg−1) | CR = 100% after 100 cycles | 1038 mAhg−1 at 100 mAg−1 after 100 cycles | [171] |
6. Conclusions and Outlook
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bruno Scrosati, J.G. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430. [Google Scholar] [CrossRef]
- Nishi, Y. Lithium ion secondary batteries; past 10 years and the future. J. Power Sources 2001, 100, 101–106. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Y.; Lin, D.; Pei, A.; Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 2018, 4, 1–11. [Google Scholar] [CrossRef]
- Blomgren, G.E. The Development and Future of Lithium Ion Batteries. J. Electrochem. Soc. 2016, 164, A5019–A5025. [Google Scholar] [CrossRef]
- Zhao, S.; Sewell, C.D.; Liu, R.; Jia, S.; Wang, Z.; He, Y.; Yuan, K.; Jin, H.; Wang, S.; Liu, X.; et al. SnO2 as Advanced Anode of Alkali-Ion Batteries: Inhibiting Sn Coarsening by Crafting Robust Physical Barriers, Void Boundaries, and Heterophase Interfaces for Superior Electrochemical Reaction Reversibility. Adv. Energy Mater. 2019, 10, 1902657. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Yan, B.; Li, D.; Lawes, S.; Sun, X. Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: A review. J. Power Sources 2015, 274, 869–884. [Google Scholar] [CrossRef]
- Zhang, W.-J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 2011, 196, 13–24. [Google Scholar] [CrossRef]
- Peng, B.; Chen, J. Functional materials with high-efficiency energy storage and conversion for batteries and fuel cells. Coord. Chem. Rev. 2009, 253, 2805–2813. [Google Scholar] [CrossRef]
- Huang, B.; Pan, Z.; Su, X.; An, L. Tin-based materials as versatile anodes for alkali (earth)-ion batteries. J. Power Sources 2018, 3955, 41–59. [Google Scholar] [CrossRef]
- Ovejas, V.J.; Cuadras, A. Effects of cycling on lithium-ion battery hysteresis and overvoltage. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, J.; Wang, N.; Wu, C.; Dong, G.; Guan, L. Fully Reversible Conversion between SnO2 and Sn in SWNTs@SnO2@PPy Coaxial Nanocable As High Performance Anode Material for Lithium Ion Batteries. J. Phys. Chem. 2012, 116, 18612–18617. [Google Scholar] [CrossRef]
- Hu, R.; Chen, D.; Waller, G.; Ouyang, Y.; Chen, Y.; Zhao, B.; Rainwater, B.; Yang, C.; Zhu, M.; Liu, M. Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: The effect of nanostructure on high initial reversible capacity. Energy Environ. Sci. 2016, 9, 595–603. [Google Scholar] [CrossRef]
- Kim, H.; Kim, M.-C.; Kim, S.-B.; Kim, Y.-S.; Choi, J.-H.; Park, K.-W. Porous SnO2 nanostructure with a high specific surface area for improved electrochemical performance. RSC Adv. 2020, 10, 10519–10525. [Google Scholar] [CrossRef] [PubMed]
- Zoller, F.; Böhm, D.; Bein, T.; Fattakhova-Rohlling, D. Tin Oxide Based Nanomaterials and Their Application as Anodes in Lithium-Ion Batteries and Beyond. ChemSusChem 2019, 12, 4140–4159. [Google Scholar] [CrossRef]
- Cheng, Y.; Nie, A.; Gan, L.-Y.; Zhang, Q.; Schwingenschlögl, U. A global view of the phase transitions of SnO2 in rechargeable batteries based on results of high throughput calculations. J. Phys. Chem. A 2015, 3, 19486–19489. [Google Scholar] [CrossRef]
- Ferraresi, G.; Villevieille, C.; Czekaj, I.; Horisberger, M.; Novák, P.; El Kazzi, M. SnO2 Model Electrode Cycled in Li-Ion Battery Reveals the Formation of Li2SnO3 and Li8SnO6 Phases through Conversion Reactions. ACS Appl. Mater. Interfaces 2018, 10, 8712–8720. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Dhara, A.; Dendooven, J.; Detavernier, C. Atomic Layer Deposition of SnO2-Based Composite Anodes for Thin-Film Lithium-Ion Batteries. Front. Energy Res. 2020, 8, 609417. [Google Scholar] [CrossRef]
- Scott Kriklin, J.E.S.; Meredig, B.; Thomson, A.; Doak, J.W.; Aykol, M.; Rühl, S.; Wolverton, C. The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies. NPJ Comput. Mater. 2015, 1, 1–15. [Google Scholar] [CrossRef]
- Ahn, H.-J.; Choi, H.-C.; Park, K.-W.; Kim, S.-B.; Sung, Y.-E. Investigation of the Structural and Electrochemical Properties of Size-Controlled SnO2 Nanoparticles. J. Phys. Chem. B 2004, 108, 9815–9820. [Google Scholar] [CrossRef]
- Emerich, D.F.; Thanos, C.G. Nanotechnology and medicine. Expert Opin. Biol. Ther. 2003, 3, 655–663. [Google Scholar] [CrossRef]
- Sekhon, B.S. Food nanotechnology—An overview. Nanotechnol. Sci. Appl. 2010, 3, 1–15. [Google Scholar]
- Ali Mansoori, G.; Bastami, T.R.; Ahmadpour, A.; Eshaghi, Z. Environmental application of nanotechnology. In Annual Review of Nano Research; World Scientific: Singapore, 2008; Volume 2, pp. 439–493. [Google Scholar]
- Patra, J.K.; Gouda, S. Application of nano technology in textile engineering: An overview. J. Eng. Technol. Res. 2013, 5, 104–111. [Google Scholar] [CrossRef]
- Raj, S.; Jose, S.; Sumod, U.S.; Sabitha, M. Nanotechnology in cosmetics: Opportunities and challenges. J. Pharm. Bioallied Sci. 2012, 4, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Payal; Pandey, P. Role of Nanotechnology in Electronics: A Review of Recent Developments and Patents. Recent Pat. Nanotechnol. 2022, 16, 45–66. [Google Scholar] [CrossRef] [PubMed]
- Serrano, E.; Rus, G.; García-Martínez, J. Nanotechnology for sustainable energy. Renew. Sustain. Energy Rev. 2009, 13, 2373–2384. [Google Scholar] [CrossRef]
- Wen, H.; Kang, W.; Liu, X.; Li, W.; Zhang, L.; Zhang, C. Two-phase interface hydrothermal synthesis of binder-free SnS2/graphene flexible paper electrodes for high-performance Li-ion batteries. RSC Adv. 2019, 9, 23607–23613. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Zhang, H.; Lu, Z.; Liu, J.; Zeng, M.; Yang, L.; Yuan, B.; Zhu, M. Unveiling critical size of coarsened Sn nanograins for achieving high round-trip efficiency of reversible conversion reaction in lithiated SnO2 nanocrystals. Nano Energy 2018, 45, 255–265. [Google Scholar] [CrossRef]
- Liang, Z.; Li, S.; Yuan, B.; Hu, R.; Liu, J.; Zhu, M. Reversible formation of metastable Sn-rich solid solution in SnO2-based anode for high-performance lithium storage. Appl. Mater. Today 2021, 25, 101242. [Google Scholar] [CrossRef]
- Wei, L.; Yu, Q.; Yang, X.; Li, J.-H.; Shen, W.; Kang, F.; Lv, R.; Ma, L.; Huang, Z.-H. A facile assembly of SnO2 nanoparticles and moderately exfoliated graphite for advanced lithium-ion battery anode. Electrochim. Acta 2022, 432, 141210. [Google Scholar] [CrossRef]
- Xu, X.; Xu, F.; Qu, C.; Jiang, G.; Yu, H.; Repich, H.; Han, H.; Cao, F.; Li, L.; Wang, H. Laser-Manufactured Metastable Supranano SnOx for Efficient Electron/Ion Bridging in SnO2-Graphene Heterostructure Boosting Lithium Storage. Adv. Funct. Mater. 2021, 31, 2101059. [Google Scholar] [CrossRef]
- Dai, Y.; Li, F.; Fu, Y.-X.; Mo, D.-C.; Lyu, S.-S. Carbon-coated SnO2 riveted on a reduced graphene oxide composite (C@SnO2/RGO) as an anode material for lithium-ion batteries. RSC Adv. 2021, 11, 8521–8529. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Zhang, Y.; Li, L.; Wang, N.; Chai, Y. Nano SnO2 and Sb2O3 combined with CNTs as a high-capacity lithium storage material. Appl. Surf. Sci. 2021, 543, 148870. [Google Scholar] [CrossRef]
- Kim, W.-S.; Hwa, Y.; Kim, H.-C.; Choi, J.-H.; Sohn, H.-J.; Hong, S.-H. SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Res. 2014, 7, 1128–1136. [Google Scholar] [CrossRef]
- Liang, T.; Hu, R.; Zhang, H.; Zhang, H.; Wang, H.; Ouyang, Y.; Liu, J.; Yang, L.; Zhu, M. A scalable ternary SnO2–Co–C composite as a high initial coulombic efficiency, large capacity and long lifetime anode for lithium ion batteries. J. Mater. Chem. A 2018, 6, 7206–7220. [Google Scholar] [CrossRef]
- Li, J.; Xu, X.; Luo, Z.; Zhang, C.; Zuo, Y.; Zhang, T.; Tang, P.; Infante-Carrió, M.F.; Arbiol, J.; Llorca, J.; et al. Co–Sn Nanocrystalline Solid Solutions as Anode Materials in Lithium-Ion Batteries with High Pseudocapacitive Contribution. ChemSusChem 2019, 12, 1451–1458. [Google Scholar] [CrossRef]
- Yi, Z.; Wang, Z.; Cheng, Y.; Wang, L. Sn-based Intermetallic Compounds for Li-ion Batteries: Structures, Lithiation Mechanism, and Electrochemical Performances. Energy Environ. Mater. 2018, 1, 132–147. [Google Scholar] [CrossRef]
- Christian Julien, A.M.; Vijh, A.; Zaghib, K. Lithium Batteries; Springer: Cham, Switzerland, 2016; p. 619. [Google Scholar]
- Chen, J.S.; Lou, X.W. SnO2-Based Nanomaterials: Synthesis and Application in Lithium-Ion Batteries. Small 2013, 9, 1877–1893. [Google Scholar] [CrossRef]
- Goodenough, J.B. Evolution of Strategies for Modern Rechargeable Batteries. Acc. Chem. Res. 2012, 45, 1053–1061. [Google Scholar] [CrossRef] [PubMed]
- Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef]
- Arlinghaus, F.J. Energy bands in stannic oxide (SnO2). J. Phys. Chem. Solids 1974, 35, 931–935. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, P.; Miao, C.; Chen, Z.; Lawrence Wu, C.M.; Shek, C.-H. Formation of orthorhombic SnO2 originated from lattice distortion by Mn-doped tetragonal SnO2. RSC Adv. 2015, 5, 39285–39290. [Google Scholar] [CrossRef]
- Le, T.; Dang, H.P. Effect of the Sb content in the SnO2 lattice and N2 percentage in a mixed sputtering gas on the N solubility in SnO2 films. Sens. Actuators A Phys. 2020, 316, 112421. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, C.-M.; Lv, M.-B.; Chen, X.-R.; Zhu, J.; Ji, G.-F. Structures, phase transition, elastic properties of SnO2 from first-principles analysis. Phys. B Condens. Matter 2011, 406, 3508–3513. [Google Scholar] [CrossRef]
- Shieh, S.R.; Kubo, A.; Duffy, T.S.; Prakapenka, V.B.; Shen, G. High-pressure phases in SnO2 to 117 GPa. Phys. Rev. B 2006, 73, 014105. [Google Scholar] [CrossRef]
- Lian, Y.; Huang, X.; Yu, J.; Tang, T.B.; Zhang, W.; Gu, M. Characterization of scrutinyite SnO2 and investigation of the transformation with 119Sn NMR and complex impedance method. AIP Adv. 2018, 8, 125226. [Google Scholar] [CrossRef]
- Hays, J.; Punnoose, A.; Baldner, R.; Engelhard, M.H.; Peloquin, J.; Reddy, K.M. Relationship between the structural and magnetic properties of Co-doped SnO2 nanoparticles. Phys. Rev. B 2005, 72, 075203. [Google Scholar] [CrossRef]
- Haines, J.; Léger, J.M.; Schulte, O. Pa3 Modified Fluorite-Type Structures in Metal Dioxides at High Pressure. Science 1996, 271, 629–631. [Google Scholar] [CrossRef]
- Das, S.; Jayaraman, V. SnO2: A comprehensive review on structures and gas sensors. Prog. Mater. Sci. 2014, 66, 112–255. [Google Scholar] [CrossRef]
- Gracia, L.; Beltrán, A.; Andrés, J. Characterization of the High-Pressure Structures and Phase Transformations in SnO2. A Density Functional Theory Study. J. Phys. Chem. B 2007, 111, 6479–6485. [Google Scholar] [CrossRef] [PubMed]
- Saldaña-Ramírez, A.; Cruz, M.R.A.; Juárez-Ramírez, I.; Torres-Martínez, L.M. Influence of the power density and working pressure in the magnetron co-sputtering deposition of ZnO–SnO2 thin films and their effect in photocatalytic hydrogen production. Opt. Mater. 2020, 110, 110501. [Google Scholar] [CrossRef]
- Chen, Z.; Lai, J.K.L.; Shek, C.-H. Facile strategy and mechanism for orthorhombic SnO2 thin films. Appl. Phys. Lett. 2006, 89, 231902. [Google Scholar] [CrossRef]
- Lamelas, F.J.; Reid, S.A. Thin-film synthesis of the orthorhombic phase of SnO2. Phys. Rev. B 1999, 60, 9347–9352. [Google Scholar] [CrossRef]
- Kim, S.; Kim, D.-H.; Hong, S.-H. Epitaxial growth of orthorhombic SnO2 films on various YSZ substrates by plasma enhanced atomic layer deposition. J. Cryst. Growth 2012, 348, 15–19. [Google Scholar] [CrossRef]
- Won, J.H.; Han, S.H.; Park, B.K.; Chung, T.-M.; Han, J.H. Effect of Oxygen Source on the Various Properties of SnO2 Thin Films Deposited by Plasma-Enhanced Atomic Layer Deposition. Coatings 2020, 10, 692. [Google Scholar] [CrossRef]
- Bae, J.-Y.; Park, J.; Kim, H.Y.; Kim, H.-S.; Park, J.-S. Facile Route to the Controlled Synthesis of Tetragonal and Orthorhombic SnO2 Films by Mist Chemical Vapor Deposition. ACS Appl. Mater. Interfaces 2015, 7, 12074–12079. [Google Scholar] [CrossRef]
- Tian, S.; Gao, Y.; Zeng, D.; Xie, C. Effect of Zinc Doping on Microstructures and Gas-Sensing Properties of SnO2 Nanocrystals. J. Am. Ceram. Soc. 2012, 95, 436–442. [Google Scholar] [CrossRef]
- Parthibavarman, M.; Renganathan, B.; Sastikumar, D. Development of high sensitivity ethanol gas sensor based on Co-doped SnO2 nanoparticles by microwave irradiation technique. Curr. Appl. Phys. 2013, 13, 1537–1544. [Google Scholar] [CrossRef]
- Carvalho, M.H.; Pereira, E.C.; de Oliveira, A.J.A. Orthorhombic SnO2 phase observed composite (Sn1−xCex)O2 synthesized by sol–gel route. RSC Adv. 2018, 8, 3958–3963. [Google Scholar] [CrossRef]
- Gwon, H.J.; Kang, N.-R.; Lee, Y.; Won, S.O.; Chang, H.J.; Choi, J.-W.; Kang, C.-Y.; Kim, S.K.; Kwon, B.; Nahm, S.; et al. Enhancement of Mechanical Hardness in SnOxNy with a Dense High-Pressure Cubic Phase of SnO2. Chem. Mater. 2016, 28, 7051–7057. [Google Scholar] [CrossRef]
- Dubourdieu, C.; Rauwel, E.; Roussel, H.; Ducroquet, F.; Holländer, B.; Rossell, M.; Van Tendeloo, G.; Lhostis, S.; Rushworth, S. Addition of yttrium into HfO2 films: Microstructure and electrical properties. J. Vac. Sci. Technol. A 2009, 27, 503–514. [Google Scholar] [CrossRef]
- Rauwel, P.; Rauwel, E.; Persson, C.; Sunding, M.F.; Galeckas, A. One step synthesis of pure cubic and monoclinic HfO2 nanoparticles: Correlating the structure to the electronic properties of the two polymorphs. J. Appl. Phys. 2012, 112, 104107. [Google Scholar] [CrossRef]
- Barbarat, P.; Matar, S.F. First-principles investigations of the electronic, optical and chemical bonding properties of SnO2. Comput. Mater. Sci. 1998, 10, 368–372. [Google Scholar] [CrossRef]
- Kucheyev, S.O.; Baumann, T.F.; Sterne, P.A.; Wang, Y.M.; van Buuren, T.; Hamza, A.V.; Terminello, L.J.; Willey, T.M. Surface electronic states in three-dimensional SnO2 nanostructures. Phys. Rev. B 2005, 72, 035404. [Google Scholar] [CrossRef]
- Buzin, E.R.; Prellier, W.; Mercey, B.; Ch, S.; Raveau, B. Relations between structural distortions and transport properties in Nd0.5Ca0.5MnO3 strained thin films. J. Phys. Condens. Matter 2002, 14, 3951. [Google Scholar] [CrossRef][Green Version]
- Zhou, W.; Liu, Y.; Yang, Y.; Wu, P. Band Gap Engineering of SnO2 by Epitaxial Strain: Experimental and Theoretical Investigations. J. Phys. Chem. C 2014, 118, 6448–6453. [Google Scholar] [CrossRef]
- Xiao, W.-Z.; Xiao, G.; Wang, L.-L. A first-principles study of the SnO2 monolayer with hexagonal structure. J. Chem. Phys. 2016, 145, 174702. [Google Scholar] [CrossRef]
- Bouamra, F.; Boumeddiene, A.; Rérat, M.; Belkhir, H. First principles calculations of magnetic properties of Rh-doped SnO2 (110) surfaces. Appl. Surf. Sci. 2013, 269, 41–44. [Google Scholar] [CrossRef]
- Liu, Q.-J.; Liu, Z.-T.; Feng, L.-P. First-principles calculations of structural, electronic and optical properties of tetragonal SnO2 and SnO. Comput. Mater. Sci. 2010, 47, 1016–1022. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Tran, F.; Blaha, P. Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Phys. Rev. Lett. 2009, 102, 226401. [Google Scholar] [CrossRef]
- Becke, A.D.; Johnson, E.R. A simple effective potential for exchange. J. Chem. Phys. 2006, 124, 221101. [Google Scholar] [CrossRef]
- Slassi, A.; Hammi, M.; Oumekloul, Z.; Nid-bahami, A.; Arejdal, M.; Ziat, Y.; El Rhazouani, O. Effect of halogens doping on transparent conducting properties of SnO2 rutile: An ab initio investigation. Opt. Quantum Electron. 2017, 50, 8. [Google Scholar] [CrossRef]
- Ikhmayies, S.J.; Ahmad-Bitar, R.N. An investigation of the bandgap and Urbach tail of vacuum-evaporated SnO2 thin films. Renew. Energy 2013, 49, 143–146. [Google Scholar] [CrossRef]
- Abass, A.K.; Mohammad, M.T. Optical properties of fluorine-doped SnO2 films. J. Appl. Phys. 1986, 59, 1641–1643. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, P.; Wei, S.-H. Revisit of the band gaps of rutile SnO2 and TiO2: A first-principles study. J. Semicond. 2019, 40, 092101. [Google Scholar] [CrossRef]
- Han, X.; Deng, R.; Sun, B.; Jiang, D.; Zhao, M.; Yao, B.; Li, Y. Tuning optical and electrical properties of TixSn1−xO2 alloy thin films with dipole-forbidden transition via band gap and defect engineering. J. Alloys Compd. 2021, 885, 160974. [Google Scholar] [CrossRef]
- Li, Y.; Yin, W.; Deng, R.; Chen, R.; Chen, J.; Yan, Q.; Yao, B.; Sun, H.; Wei, S.-H.; Wu, T. Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule. NPG Asia Mater. 2012, 4, e30. [Google Scholar] [CrossRef]
- Wang, Y.; Su, J.; Lin, Z.; Zhang, J.; Chang, J.; Hao, Y. Recent progress on the effects of impurities and defects on the properties of Ga2O3. J. Mater. Chem. C 2022, 10, 13395–13436. [Google Scholar] [CrossRef]
- Hu, Z.; Lin, Z.; Su, J.; Zhang, J.; Chang, J.; Hao, Y. A Review on Energy Band-Gap Engineering for Perovskite Photovoltaics. Sol. RRL 2019, 3, 1900304. [Google Scholar] [CrossRef]
- Jithin, P.V.; Sudheendran, K.; Sankaran, K.J.; Kurian, J. Influence of Fe-doping on the structural and photoluminescence properties and on the band-gap narrowing of SnO2 nanoparticles. Opt. Mater. 2021, 120, 111367. [Google Scholar] [CrossRef]
- Munetoshi, S. Bandgap-Engineered Iron Oxides for Solar Energy Harvesting. In Iron Ores and Iron Oxide Materials; Volodymyr, S., Ed.; IntechOpen: Rijeka, Croatia, 2018; Chapter 13. [Google Scholar]
- El Radaf, I.M.; Hameed, T.A.; El Komy, G.M.; Dahy, T.M. Synthesis, structural, linear and nonlinear optical properties of chromium doped SnO2 thin films. Ceram. Int. 2019, 45, 3072–3080. [Google Scholar] [CrossRef]
- Keskenler, E.F.; Turgut, G.; Aydın, S.; Doğan, S. W doped SnO2 growth via sol–gel routes and characterization: Nanocubes. Optik 2013, 124, 4827–4831. [Google Scholar] [CrossRef]
- Butcher, K.S.A.; Hirshy, H.; Perks, R.M.; Wintrebert-Fouquet, M.; Chen, P.P.T. Stoichiometry effects and the Moss–Burstein effect for InN. Phys. Status Solidi A 2006, 203, 66–74. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Erdem, I.; Kart, H.H.; Cagin, T. High pressure phase transitions in SnO2 polymorphs by first-principles calculations. J. Alloys Compd. 2014, 587, 638–645. [Google Scholar] [CrossRef]
- Jarzebski, Z.M.; Marton, J.P. Physical Properties of SnO2 Materials: I. Preparation and Defect Structure. J. Electrochem. Soc. 1976, 123, 199C. [Google Scholar] [CrossRef]
- Crapanzano, R.; Villa, I.; Mostoni, S.; D’Arienzo, M.; Di Credico, B.; Fasoli, M.; Scotti, R.; Vedda, A. Morphology Related Defectiveness in ZnO Luminescence: From Bulk to Nano-Size. Nanomaterials 2020, 10, 1983. [Google Scholar] [CrossRef]
- Najib, S.; Bakan, F.; Abdullayeva, N.; Bahariqushchi, R.; Kasap, S.; Franzò, G.; Sankir, M.; Demirci Sankir, N.; Mirabella, S.; Erdem, E. Tailoring morphology to control defect structures in ZnO electrodes for high-performance supercapacitor devices. Nanoscale 2020, 12, 16162–16172. [Google Scholar] [CrossRef] [PubMed]
- Kar, A.; Olszówka, J.; Sain, S.; Sloman, S.-R.I.; Montes, O.; Fernández, A.; Pradhan, S.K.; Wheatley, A.E.H. Morphological effects on the photocatalytic properties of SnO2 nanostructures. J. Alloys Compd. 2019, 810, 151718. [Google Scholar] [CrossRef]
- Xiong, Y.; Lin, Y.; Wang, X.; Zhao, Y.; Tian, J. Defect engineering on SnO2 nanomaterials for enhanced gas sensing performances. Adv. Powder Mater. 2022, 1, 100033. [Google Scholar] [CrossRef]
- Wang, X.; Ren, P.; Tian, H.; Fan, H.; Cai, C.; Liu, W. Enhanced gas sensing properties of SnO2: The role of the oxygen defects induced by quenching. J. Alloys Compd. 2016, 669, 29–37. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Guo, Y.; Xu, J.; Xu, X.; Fang, X.; Liu, J.; Chen, W.; Arandiyan, H.; Wang, X. Tuning SnO2 Surface Area for Catalytic Toluene Deep Oxidation: On the Inherent Factors Determining the Reactivity. Ind. Eng. Chem. Res. 2018, 57, 14052–14063. [Google Scholar] [CrossRef]
- Rauwel, E.; Galeckas, A.; Rauwel, P. Photoluminescent cubic and monoclinic HfO2 nanoparticles: Effects of temperature and ambient. Mater. Res. Express 2014, 1, 015035. [Google Scholar] [CrossRef]
- Rauwel, E.; Galeckas, A.; Soares, M.R.; Rauwel, P. Influence of the Interface on the Photoluminescence Properties in ZnO Carbon-Based Nanohybrids. J. Phys. Chem. C 2017, 121, 14879–14887. [Google Scholar] [CrossRef]
- Peng, Y.-K.; Tsang, S.C.E. Facet-dependent photocatalysis of nanosize semiconductive metal oxides and progress of their characterization. Nano Today 2018, 18, 15–34. [Google Scholar] [CrossRef]
- Bahuguna, G.; Verma, M.; Gupta, R. Chemical insights into electrophilic fluorination of SnO2 for photoelectrochemical applications. J. Mater. Chem. A 2021, 9, 19965–19974. [Google Scholar] [CrossRef]
- Godinho, K.G.; Walsh, A.; Watson, G.W. Energetic and Electronic Structure Analysis of Intrinsic Defects in SnO2. J. Phys. Chem. C 2009, 113, 439–448. [Google Scholar] [CrossRef]
- Sun, X.; Long, R.; Cheng, X.; Zhao, X.; Dai, Y.; Huang, B. Structural, Electronic, and Optical Properties of N-doped SnO2. J. Phys. Chem. C 2008, 112, 9861–9864. [Google Scholar] [CrossRef]
- Dai, G.; Zhou, W.; Ma, X.; Yuan, J.; Wu, P. Structure and magnetic properties of Cr-Doped tin monoxide prepared by hydrothermal method. Ceram. Int. 2020, 46, 13350–13355. [Google Scholar] [CrossRef]
- Ricciarelli, D.; Meggiolaro, D.; Ambrosio, F.; De Angelis, F. Instability of Tin Iodide Perovskites: Bulk p-Doping versus Surface Tin Oxidation. ACS Energy Lett. 2020, 5, 2787–2795. [Google Scholar] [CrossRef]
- Villamagua, L.; Stashans, A.; Lee, P.-M.; Liu, Y.-S.; Liu, C.-Y.; Carini, M. Change in the electrical conductivity of SnO2 crystal from n-type to p-type conductivity. Chem. Phys. 2015, 452, 71–77. [Google Scholar] [CrossRef]
- Ahmed, A.; Naseem Siddique, M.; Alam, U.; Ali, T.; Tripathi, P. Improved photocatalytic activity of Sr doped SnO2 nanoparticles: A role of oxygen vacancy. Appl. Surf. Sci. 2019, 463, 976–985. [Google Scholar] [CrossRef]
- Zeng, Q.; Cui, Y.; Zhu, L.; Yao, Y. Increasing oxygen vacancies at room temperature in SnO2 for enhancing ethanol gas sensing. Mater. Sci. Semicond. Process. 2020, 111, 104962. [Google Scholar] [CrossRef]
- Toloman, D.; Popa, A.; Stefan, M.; Silipas, T.D.; Suciu, R.C.; Barbu-Tudoran, L.; Pana, O. Enhanced photocatalytic activity of Co doped SnO2 nanoparticles by controlling the oxygen vacancy states. Opt. Mater. 2020, 110, 110472. [Google Scholar] [CrossRef]
- Mehraj, S.; Ansari, M.S.; Al-Ghamdi, A.A.; Alimuddin. Annealing dependent oxygen vacancies in SnO2 nanoparticles: Structural, electrical and their ferromagnetic behavior. Mater. Chem. Phys. 2016, 171, 109–118. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Di, Q.; Zhao, H.; Liang, B.; Yang, J. Mutual Effects of Fluorine Dopant and Oxygen Vacancies on Structural and Luminescence Characteristics of F Doped SnO2 Nanoparticles. Materials 2017, 10, 1398. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Ruan, X.; Yan, J.; Zhang, Z.; Yun, J.; Zhao, W.; Li, T.; Shi, Y. Synthesis, growth mechanism, and photoluminescence property of hierarchical SnO2 nanoflower-rod arrays: An experimental and first principles study. J. Mater. Sci. 2016, 51, 9613–9624. [Google Scholar] [CrossRef]
- Gu, F.; Wang, S.F.; Lü, M.K.; Zhou, G.J.; Xu, D.; Yuan, D.R. Photoluminescence Properties of SnO2 Nanoparticles Synthesized by Sol–Gel Method. J. Phys. Chem. B 2004, 108, 8119–8123. [Google Scholar] [CrossRef]
- Habte, A.G.; Hone, F.G.; Dejene, F.B. Zn doping effect on the properties of SnO2 nanostructure by co-precipitation technique. Appl. Phys. A 2019, 125, 402. [Google Scholar] [CrossRef]
- Salem, J.K.; Hammad, T.M.; Harrison, R.R. Synthesis, structural and optical properties of Ni-doped ZnO micro-spheres. J. Mater. Sci. Mater. Electron. 2013, 24, 1670–1676. [Google Scholar] [CrossRef]
- Mishra, R.K.; Sahay, P.P. Synthesis, characterization and alcohol sensing property of Zn-doped SnO2 nanoparticles. Ceram. Int. 2012, 38, 2295–2304. [Google Scholar] [CrossRef]
- Mishra, R.K.; Kushwaha, A.; Sahay, P.P. Cr-induced modifications in the structural, photoluminescence and acetone-sensing behaviour of hydrothermally synthesised SnO2 nanoparticles. J. Exp. Nanosci. 2015, 10, 1042–1056. [Google Scholar] [CrossRef]
- Khandelwal, R.; Singh, A.P.; Kapoor, A.; Grigorescu, S.; Miglietta, P.; Stankova, N.E.; Perrone, A. Effects of deposition temperature on the structural and morphological properties of SnO2 films fabricated by pulsed laser deposition. Opt. Laser Technol. 2009, 41, 89–93. [Google Scholar] [CrossRef]
- Ham, D.; Oh, S.; Kang, H.C. Competing phases in epitaxial SnO2 thin films deposited on sapphire (0001) substrates using radio-frequency powder sputtering. Ceram. Int. 2022, 48, 28396–28403. [Google Scholar] [CrossRef]
- Camacho-López, M.A.; Galeana-Camacho, J.R.; Esparza-García, A.; Sánchez-Pérez, C.; Julien, C.M. Characterization of nanostructured SnO2 films deposited by reactive DC-magnetron sputtering. Superf. Vacio 2013, 26, 95–99. [Google Scholar]
- Nguyen, T.T.; Dang, H.P.; Luc, Q.H.; Le, T. Studying the influence of deposition temperature and nitrogen contents on the structural, optical, and electrical properties of N-doped SnO2 films prepared by direct current magnetron sputtering. Ceram. Int. 2019, 45, 9147–9156. [Google Scholar] [CrossRef]
- Xu, Y.; Li, R. Wet-chemical synthesis and characterization of nitrogen-doped CeO2 powders for oxygen storage capacity. Appl. Surf. Sci. 2018, 455, 997–1004. [Google Scholar] [CrossRef]
- Sharma, R.; Naedele, D.; Schweda, E. In Situ Studies of Nitridation of Zirconia (ZrO2). Chem. Mater. 2001, 13, 4014–4018. [Google Scholar] [CrossRef]
- Xu, L.; Nishimura, T.; Shibayama, S.; Yajima, T.; Migita, S.; Toriumi, A. Ferroelectric phase stabilization of HfO2 by nitrogen doping. Appl. Phys. Express 2016, 9, 091501. [Google Scholar] [CrossRef]
- He, L.; Luan, C.; Feng, X.; Xiao, H.; Ma, J. Effect of niobium doping on the structural, electrical and optical properties of epitaxial SnO2 films on MgF2 (110) substrates by MOCVD. J. Alloys Compd. 2018, 741, 677–681. [Google Scholar] [CrossRef]
- Luan, C.; Zhu, Z. Structural and electrical properties of epitaxial SnO2: Sb films deposited on 6 H-SiC by MOCVD. J. Mater. Sci. Mater. Electron. 2021, 32, 21798–21803. [Google Scholar] [CrossRef]
- Kong, L.; Ma, J.; Zhu, Z.; Luan, C.; Yu, X.; Yu, Q. Synthesis of orthorhombic structure epitaxial tin oxide film. Mater. Lett. 2010, 64, 1350–1353. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Q.; Chang, H.L.M.; Chen, H. Variant structure in metal-organic-chemical-vapor-deposition-derived SnO2 thin films on sapphire (0001). J. Mater. Res. 1995, 10, 1516–1522. [Google Scholar] [CrossRef]
- He, L.; Luan, C.; Cao, Q.; Feng, X.; Zhao, W.; Ma, J. Characterization of Rutile SnO2 Epitaxial Films Grown on MgF2 (001) Substrates by MOCVD. Cryst. Res. Technol. 2018, 53, 1700168. [Google Scholar] [CrossRef]
- Sheng Pan, S.; Fung Yu, S.; Xia Zhang, Y.; Yuan Luo, Y.; Wang, S.; Min Xu, J.; Hai Li, G. Crystallite size-modulated exciton emission in SnO2 nanocrystalline films grown by sputtering. J. Appl. Phys. 2013, 113, 143104. [Google Scholar] [CrossRef]
- Saipriya, S.; Sultan, M.; Singh, R. Effect of environment and heat treatment on the optical properties of RF-sputtered SnO2 thin films. Phys. B Condens. Matter 2011, 406, 812–817. [Google Scholar] [CrossRef]
- Lee, D.-K.; Wan, Z.; Bae, J.-S.; Lee, H.-B.-R.; Ahn, J.-H.; Kim, S.-D.; Kim, J.; Kwon, S.-H. Plasma-enhanced atomic layer deposition of SnO2 thin films using SnCl4 and O2 plasma. Mater. Lett. 2016, 166, 163–166. [Google Scholar] [CrossRef]
- Liu, Y.; Koep, E.; Liu, M. A Highly Sensitive and Fast-Responding SnO2 Sensor Fabricated by Combustion Chemical Vapor Deposition. Chem. Mater. 2005, 17, 3997–4000. [Google Scholar] [CrossRef]
- Ali, S.M.; Hussain, S.T.; Bakar, S.A.; Muhammad, J.; ur Rehman, N. Effect of doping on the Structural and Optical Properties of SnO2 Thin Films fabricated by Aerosol Assisted Chemical Vapor Deposition. J. Phys. Conf. Ser. 2013, 439, 012013. [Google Scholar] [CrossRef]
- Gavaskar, D.S.; Nagaraju, P.; Vijayakumar, Y.; Reddy, P.S.; Ramana Reddy, M.V. Low-cost ultra-sensitive SnO2-based ammonia sensor synthesized by hydrothermal method. J. Asian Ceram. Soc. 2020, 8, 605–614. [Google Scholar] [CrossRef]
- Vuong, D.D.; Hien, V.X.; Trung, K.Q.; Chien, N.D. Synthesis of SnO2 micro-spheres, nano-rods and nano-flowers via simple hydrothermal route. Phys. E Low-Dimens. Syst. Nanostructures 2011, 44, 345–349. [Google Scholar] [CrossRef]
- Guan, M.; Zhao, X.; Duan, L.; Cao, M.; Guo, W.; Liu, J.; Zhang, W. Controlled synthesis of SnO2 nanostructures with different morphologies and the influence on photocatalysis properties. J. Appl. Phys. 2013, 114, 114302. [Google Scholar] [CrossRef]
- Mishra, R.K.; Upadhyay, S.B.; Sahay, P.P. Volatile Organic Compounds (VOCs) Response Characteristics of the Hydrothermally Synthesized SnO2 Nanocapsules. Sens. Lett. 2013, 11, 1611–1616. [Google Scholar] [CrossRef]
- Zhou, X.; Fu, W.; Yang, H.; Ma, D.; Cao, J.; Leng, Y.; Guo, J.; Zhang, Y.; Sui, Y.; Zhao, W.; et al. Synthesis and ethanol-sensing properties of flowerlike SnO2 nanorods bundles by poly(ethylene glycol)-assisted hydrothermal process. Mater. Chem. Phys. 2010, 124, 614–618. [Google Scholar] [CrossRef]
- Xi, G.; Ye, J. Ultrathin SnO2 Nanorods: Template- and Surfactant-Free Solution Phase Synthesis, Growth Mechanism, Optical, Gas-Sensing, and Surface Adsorption Properties. Inorg. Chem. 2010, 49, 2302–2309. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Zeng, W.; Zhang, H.; Li, Y. Hydrothermal synthesis of SnO2 nanocubes and nanospheres and their gas sensing properties. J. Mater. Sci. Mater. Electron. 2015, 26, 2871–2878. [Google Scholar] [CrossRef]
- Runa, A.; Bala, H.; Wang, Y.; Chen, J.; Zhang, B.; Li, H.; Fu, W.; Wang, X.; Sun, G.; Cao, J.; et al. Synthesis, characterization, and gas-sensing properties of monodispersed SnO2 nanocubes. Appl. Phys. Lett. 2014, 105, 053102. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, S.; Chen, Y.; Liu, C.; Li, Q. Brief Introduction on Manufacturing and Characterization of Metallic Electrode and Corresponding Modified Materials. Metals 2023, 13, 703. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, P.; Xie, Q.; Zhang, C.; Wang, L.; Peng, D.-L. Intrinsic performance regulation in hierarchically porous Co3O4 microrods towards high-rate lithium ion battery anode. Mater. Today Energy 2020, 16, 100383. [Google Scholar] [CrossRef]
- Noerochim, L.; Indra, M.A.T.; Purwaningsih, H.; Subhan, A. Porous Fe2O3 Microspheres as Anode for Lithium-Ion Batteries. IOP Conf. Ser. Mater. Sci. Eng. 2018, 367, 012038. [Google Scholar] [CrossRef]
- Zhang, L.; Song, J.; Liu, Y.; Yuan, X.; Guo, S. Tailoring nanostructured MnO2 as anodes for lithium ion batteries with high reversible capacity and initial Coulombic efficiency. J. Power Sources 2018, 379, 68–73. [Google Scholar] [CrossRef]
- Shi, S.; Deng, T.; Zhang, M.; Yang, G. Fast facile synthesis of SnO2/Graphene composite assisted by microwave as anode material for lithium-ion batteries. Electrochim. Acta 2017, 246, 1104–1111. [Google Scholar] [CrossRef]
- Kim, A.-R.; Nahm, K.S.; Yoo, D.J. Lithium Insertion Behavior of Nanoscopic Co3O4 Prepared with Avian Egg Membrane as a Template. Bull. Korean Chem. Soc. 2011, 32, 1204–1208. [Google Scholar] [CrossRef]
- Khamsanga, S.; Pornprasertsuk, R.; Yonezawa, T.; Mohamad, A.A.; Kheawhom, S. δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries. Sci. Rep. 2019, 9, 8441. [Google Scholar] [CrossRef] [PubMed]
- Mittal, N.; Ojanguren, A.; Niederberger, M.; Lizundia, E. Degradation Behavior, Biocompatibility, Electrochemical Performance, and Circularity Potential of Transient Batteries. Adv. Sci. 2021, 8, 2004814. [Google Scholar] [CrossRef]
- Yin, L.; Chai, S.; Wang, F.; Huang, J.; Li, J.; Liu, C.; Kong, X. Ultrafine SnO2 nanoparticles as a high performance anode material for lithium ion battery. Ceram. Int. 2016, 42, 9433–9437. [Google Scholar] [CrossRef]
- Etacheri, V.; Seisenbaeva, G.A.; Caruthers, J.; Daniel, G.; Nedelec, J.-M.; Kessler, V.G.; Pol, V.G. Ordered Network of Interconnected SnO2 Nanoparticles for Excellent Lithium-Ion Storage. Adv. Energy Mater. 2015, 5, 1401289. [Google Scholar] [CrossRef]
- Huang, B.; Li, X.; Pei, Y.; Li, S.; Cao, X.; Massé, R.C.; Cao, G. Novel Carbon-Encapsulated Porous SnO2 Anode for Lithium-Ion Batteries with Much Improved Cyclic Stability. Small 2016, 12, 1945–1955. [Google Scholar] [CrossRef]
- Li, H.; Su, Q.; Kang, J.; Huang, M.; Feng, M.; Feng, H.; Huang, P.; Du, G. Porous SnO2 hollow microspheres as anodes for high-performance lithium ion battery. Mater. Lett. 2018, 217, 276–280. [Google Scholar] [CrossRef]
- Li, L.; Yin, X.; Liu, S.; Wang, Y.; Chen, L.; Wang, T. Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries. Electrochem. Commun. 2010, 12, 1383–1386. [Google Scholar] [CrossRef]
- Tan, L.; Wang, M.S.; Liu, Y.J.; Xiao, X.C.; Fan, L.Z.; Wang, Y.D. Synthesis of SnO2 nanorods and hollow spheres and their electrochemical properties as anode materials for lithium ion batteries. Mater. Technol. 2012, 27, 191–195. [Google Scholar] [CrossRef]
- Narsimulu, D.; Vinoth, S.; Srinadhu, E.S.; Satyanarayana, N. Surfactant-free microwave hydrothermal synthesis of SnO2 nanosheets as an anode material for lithium battery applications. Ceram. Int. 2018, 44, 201–207. [Google Scholar] [CrossRef]
- Kulmala, M.; Kerminen, V.-M. On the formation and growth of atmospheric nanoparticles. Atmos. Res. 2008, 90, 132–150. [Google Scholar] [CrossRef]
- Kulmala, M.; Kerminen, V.-M.; Anttila, T.; Laaksonen, A.; O’Dowd, C.D. Organic aerosol formation via sulphate cluster activation. J. Geophys. Res. Atmos. 2004, 109, D04205. [Google Scholar] [CrossRef]
- Wen, Z.; Zheng, F.; Yu, H.; Jiang, Z.; Liu, K. Hydrothermal synthesis of flowerlike SnO2 nanorod bundles and their application for lithium ion battery. Mater. Charact. 2013, 76, 1–5. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Huang, X.; Ding, R.; Hu, Y.; Jiang, J.; Liao, L. Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries. J. Mater. Chem. 2009, 19, 1859–1864. [Google Scholar] [CrossRef]
- Sharma, A.; Khosla, A.; Arya, S. Synthesis of SnO2 nanowires as a reusable and flexible electrode for electrochemical detection of riboflavin. Microchem. J. 2020, 156, 104858. [Google Scholar] [CrossRef]
- Ding, S.; Chen, J.S.; Qi, G.; Duan, X.; Wang, Z.; Giannelis, E.P.; Archer, L.A.; Lou, X.W. Formation of SnO2 Hollow Nanospheres inside Mesoporous Silica Nanoreactors. J. Am. Chem. Soc. 2011, 133, 21–23. [Google Scholar] [CrossRef]
- Wu, H.B.; Chen, J.S.; Lou, X.W.; Hng, H.H. Synthesis of SnO2 Hierarchical Structures Assembled from Nanosheets and Their Lithium Storage Properties. J. Phys. Chem. C 2011, 115, 24605–24610. [Google Scholar] [CrossRef]
- Park, M.-S.; Wang, G.-X.; Kang, Y.-M.; Wexler, D.; Dou, S.-X.; Liu, H.-K. Preparation and Electrochemical Properties of SnO2 Nanowires for Application in Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2007, 46, 750–753. [Google Scholar] [CrossRef]
- Chen, J.S.; Lou, X.W. SnO2 and TiO2 nanosheets for lithium-ion batteries. Mater. Today 2012, 15, 246–254. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, S.; Dong, H.; Chen, X.; Gao, S.; Sun, Y.; Li, W.; Xu, J.; Chen, L.; Yuan, A.; et al. Nano-SnO2/Carbon Nanotube Hairball Composite as a High-Capacity Anode Material for Lithium Ion Batteries. ACS Sustain. Chem. Eng. 2019, 7, 4195–4203. [Google Scholar] [CrossRef]
- Deng, Y.; Fang, C.; Chen, G. The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: A review. J. Power Sources 2016, 304, 81–101. [Google Scholar] [CrossRef]
- Mueller, F.; Bresser, D.; Chakravadhanula, V.S.K.; Passerini, S. Fe-doped SnO2 nanoparticles as new high capacity anode material for secondary lithium-ion batteries. J. Power Sources 2015, 299, 398–402. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, Y.; Ulissi, U.; Ji, Y.; Streb, C.; Bresser, D.; Passerini, S. Influence of the doping ratio and the carbon coating content on the electrochemical performance of Co-doped SnO2 for lithium-ion anodes. Electrochim. Acta 2018, 277, 100–109. [Google Scholar] [CrossRef]
- Ou, P.; Cao, Z.; Rong, J. Multi-scale Design and Synthesis Strategy of Ni-doped SnO2 Hollow Spheres as Anode Material for Lithium-ion Batteries. Int. J. Electrochem. Sci. 2022, 17, 2. [Google Scholar] [CrossRef]
- Zhou, W.; Cheng, C.; Liu, J.; Tay, Y.Y.; Jiang, J.; Jia, X.; Zhang, J.; Gong, H.; Hng, H.H.; Yu, T.; et al. Epitaxial Growth of Branched α-Fe2O3/SnO2 Nano-Heterostructures with Improved Lithium-Ion Battery Performance. Adv. Funct. Mater. 2011, 21, 2439–2445. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Z.X.; Shi, Y.; Wong, J.I.; Ding, M.; Yang, H.Y. Designed hybrid nanostructure with catalytic effect: Beyond the theoretical capacity of SnO2 anode material for lithium ion batteries. Sci. Rep. 2015, 5, 9164. [Google Scholar] [CrossRef]
Structure | Symbol | Structure | Volume (Å3) | Density (g.cm−3) | Direct Bandgap (eV) | ||
---|---|---|---|---|---|---|---|
[87] | [88] | [87] | Cal. [51] | Exp. | |||
Rutile | P42/mnm | Tetragonal | 75.73 | 73.27 | 6.61 | 3.50 | 3.68 [42] |
CaCl2 | Pnnm | Orthorhombic | 75.52 | 72.76 | 6.63 | 3.58 | |
α-PbO2 | Pbcn | Orthorhombic | 75.12 | 71.84 | 6.66 | 3.80 | |
Pyrite | Pa | Cubic | 69.30 | 66.95 | 7.22 | 3.55 | |
ZrO2 | Pbca | Orthorhombic | 68.74 | 66.07 | 7.28 | 3.44 | |
Fluorite | Fm3m | Cubic | 68.23 | 65.86 | 7.34 | 3.01 | |
Cotunnite | Pnam | Orthorhombic | 69.25 | 63.76 | 7.23 | 2.84 | 4.1 [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponte, R.; Rauwel, E.; Rauwel, P. Tailoring SnO2 Defect States and Structure: Reviewing Bottom-Up Approaches to Control Size, Morphology, Electronic and Electrochemical Properties for Application in Batteries. Materials 2023, 16, 4339. https://doi.org/10.3390/ma16124339
Ponte R, Rauwel E, Rauwel P. Tailoring SnO2 Defect States and Structure: Reviewing Bottom-Up Approaches to Control Size, Morphology, Electronic and Electrochemical Properties for Application in Batteries. Materials. 2023; 16(12):4339. https://doi.org/10.3390/ma16124339
Chicago/Turabian StylePonte, Reynald, Erwan Rauwel, and Protima Rauwel. 2023. "Tailoring SnO2 Defect States and Structure: Reviewing Bottom-Up Approaches to Control Size, Morphology, Electronic and Electrochemical Properties for Application in Batteries" Materials 16, no. 12: 4339. https://doi.org/10.3390/ma16124339
APA StylePonte, R., Rauwel, E., & Rauwel, P. (2023). Tailoring SnO2 Defect States and Structure: Reviewing Bottom-Up Approaches to Control Size, Morphology, Electronic and Electrochemical Properties for Application in Batteries. Materials, 16(12), 4339. https://doi.org/10.3390/ma16124339