Bioactive Glass-Enhanced Resins: A New Denture Base Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silanization of Bioactive Glasses
2.2. Preparation of a Sample of Resin Modified with Bioactive Glass
2.3. Flexural Strength
2.4. Sorption and Solubility
2.5. Assessment of Ion Release of Glass and Acrylic Resins in Artificial Saliva
2.6. Hydroxyapatite (HA) Formation
2.7. Vickers Hardness Measurement
2.8. Statistical Analysis
3. Results
3.1. Flexural Strength
3.2. Sorption and Solublity
3.3. Ions Releasing
3.4. Vickers Hardness
3.5. Hydroxyapatite Formation
4. Discussion
Future Perspectives
5. Conclusions
- The addition of bioactive glass Biomin F to the acrylic resin allows for a continuous release of fluoride ions over a period of 42 days.
- Samples containing Biomin C release a large amount of ion, phosphate, and silicate anions.
- The mechanical properties of acrylic resins that contain 20% of bioactive glasses (50/50 silanized or not) meet the flexural strength normative requirements for denture plate materials.
- On the surface of the sample, using the IR technique, it was possible to identify the formation of hydroxyapatite under the influence of storing the sample in distilled water.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bertolini, M.; Costa, R.C.; Barão, V.A.R.; Villar, C.C.; Retamal-Valdes, B.; Feres, M.; Silva Souza, J.G. Oral Microorganisms and Biofilms: New Insights to Defeat the Main Etiologic Factor of Oral Diseases. Microorganisms 2022, 10, 2413. [Google Scholar] [CrossRef] [PubMed]
- Mazurek-Popczyk, J.; Nowicki, A.; Arkusz, K. Evaluation of biofilm formation on acrylic resins used to fabricate dental temporary restorations with the use of 3D printing technology. BMC Oral Health 2022, 22, 442. [Google Scholar] [CrossRef] [PubMed]
- Nowakowska-Toporowska, A.; Malecka, K.; Raszewski, Z.; Wieckiewicz, W. Changes in hardness of addition-polymerizing silicone-resilient denture liners after storage in artificial saliva. J. Prosthet. Dent. 2019, 121, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Schnurr, E.; Paqué, P.N.; Attin, T.; Nanni, P.; Grossmann, J.; Holtfreter, S.; Bröker, B.M.; Kohler, C.; Diep, B.A.; Ribeiro, A.A. Staphylococcus aureus interferes with streptococci spatial distribution and with protein expression of species within a polymicrobial oral biofilm. Antibiotics 2021, 10, 116. [Google Scholar] [CrossRef]
- Holban, A.M.; Farcasiu, C.; Andrei, O.C.; Grumezescu, A.M.; Farcasiu, A.T. Surface Modification to Modulate Microbial Biofilms-Applications in Dental Medicine. Materials 2021, 14, 6994. [Google Scholar] [CrossRef]
- Grande, F.; Tesini, F.; Pozzan, M.C.; Zamperoli, E.M.; Carossa, M.; Catapano, S. Comparison of the Accuracy between Denture Bases Produced by Subtractive and Additive Manufacturing Methods: A Pilot Study. Prosthesis 2022, 4, 151–159. [Google Scholar] [CrossRef]
- Abebe, G.M. Oral Biofilm and Its Impact on Oral Health, Psychological and Social Interaction. Int. J. Oral Dent. Health 2021, 7, 127. [Google Scholar] [CrossRef]
- Collares, F.M.; Garcia, I.M.; Bohns, F.R.; Motta, A.; Melo, M.A.; Leitune, V.C.B. Guanidine hydrochloride polymer additive to undertake ultraconservative resin infiltrant against Streptococcus mutans. Eur. Polym. J. 2020, 133, 109746. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, B.; Weir, M.D.; Homayounfar, N.; Fay, G.G.; Martinho, F.; Lei, L.; Bai, Y.; Hu, T.; Xu, H.H.K. S. mutans gene-modification and antibacterial resin composite as dual strategy to suppress biofilm acid production and inhibit caries. J. Dent. 2020, 93, 103278. [Google Scholar] [CrossRef]
- Wang, L.; Xie, X.; Qi, M.; Weir, M.D.; Reynolds, M.A.; Li, C.; Zhou, C.; Xu, H.H.K. Effects of single species versus multispecies periodontal biofilms on the antibacterial efficacy of a novel bioactive Class-V nanocomposite. Dent. Mater. 2019, 35, 847–861. [Google Scholar] [CrossRef]
- Arun, D.; Adikari Mudiyanselage, D.; Gulam, M.R.; Liddell, M.; Monsur, H.N.M.; Sharma, D. Does the Addition of Zinc Oxide Nanoparticles Improve the Antibacterial Properties of Direct Dental Composite Resins? A Systematic Review. Materials 2021, 14, 40. [Google Scholar] [CrossRef] [PubMed]
- Gad, M.M.; Abualsaud, R.; Rahoma, A.; Al-Thobity, A.M.; Akhtar, S.; Fouda, S.M. Double-layered acrylic resin denture base with nanoparticle additions: An in vitro study. J. Prosthet. Dent. 2020, 123, 386. [Google Scholar] [CrossRef] [PubMed]
- Gad, M.M.; Al-Thobity, A.M.; Rahoma, A.; Abualsaud, R.; Al-Harbi, F.A.; Akhtar, S. Reinforcement of PMMA denture base material with a mixture of ZrO2 nanoparticles and glass fibers. Int. J. Dent. 2019, 2019, 2489393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Castro, D.T.; Vilela Teixeira, A.B.; Alves, O.L.; dos Reis, A.C. Cytotoxicity and Elemental Release of Dental Acrylic Resin Modified with Silver and Vanadium Based Antimicrobial Nanomater. J. Health Sci. 2021, 23, 12–17. [Google Scholar] [CrossRef]
- Chen, J.; Peng, H.; Wang, X.; Shao, F.; Yuan, Z.; Han, H. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 2014, 6, 1879–1889. [Google Scholar] [CrossRef]
- Elwakiel, N.; El-Sayed, Y.; Elkafrawy, H. Synthesis, characterization of Ag+ and Sn2+ complexes and their applications to improve the biological and mechanical properties of denture base materials. J. Mol. Struct. 2020, 1219, 128521. [Google Scholar] [CrossRef]
- Ionescu, A.; Wutscher, E.; Brambilla, E.; Schneider-Feyrer, S.; Giessibl, F.J.; Hahnel, S. Influence of surface properties of resin-based composites on in vitro Streptococcus mutans biofilm development. Eur. J. Oral Sci. 2012, 120, 458–465. [Google Scholar] [CrossRef]
- Chang, Y.T.; Chen, G. Oral bacterial inactivation using a novel low-temperature atmospheric-pressure plasma device. J. Dent. Sci. 2016, 11, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Shibata, Y.; Yamashita, Y.; Tsuru, K.; Ishihara, K.; Fukazawa, K.; Ishikawa, K. Preventive effects of a phospholipid polymer coating on PMMA on biofilm formation by oral streptococci. Appl. Surf. Sci. 2016, 390, 602–607. [Google Scholar] [CrossRef]
- Acosta, L.D.; Pérez-Camacho, O.; Acosta, R.; Escobar, D.M.; Gallardo, C.A.; Sánchez-Vargas, L.O. Reduction of Candida albicans biofilm formation by coating polymethyl methacrylate denture bases with a photopolymerized film. J. Prosthet. Dent. 2020, 124, 605–613. [Google Scholar] [CrossRef]
- Raszewski, Z.; Nowakowska, D.; Wieckiewicz, W.; Nowakowska-Toporowska, A. Release and Recharge of Fluoride Ions from Acrylic Resin Modified with Bioactive Glass. Polymers 2021, 13, 1054. [Google Scholar] [CrossRef] [PubMed]
- Raszewski, Z.; Chojnacka, K.; Mikulewicz, M. Preparation and characterization of acrylic resins with bioactive glasses. Sci. Rep. 2022, 12, 16624. [Google Scholar] [CrossRef] [PubMed]
- ISO 20795-1: 2013 (EN); Dentistry—Denture base polymers (EN). International Organization for Standardization: Geneva, Switzerland, 2013.
- Gad, M.M.; Abualsaud, R.; Alqarawi, F.K.; Emam, A.M.; Khan, S.Q.; Akhtar, S.; Mahrous, A.A.; Al-Harbi, F.A. Translucency of nanoparticle-reinforced PMMA denture base material: An in-vitro comparative study. Dent Mater J. 2021, 40, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Rasan, D.S.; Farhan, F.A. Effect of addition of polymerized polymethyl methacrylate (PMMA) and zirconia particles on impact strength, surface hardness, and roughness of heat cure PMMA: An in vitro study. Dent. Hypotheses 2022, 14, 36–38. [Google Scholar] [CrossRef]
- Tamore, S.H.; Jyothi, K.S.; Muttagi, S.; Gaikwad, A.M. Flexural strength of surface-treated heat-polymerized acrylic resin after repair with aluminum oxide-reinforced autopolymerizing acrylic resin. Contemp. Clin. Dent. 2018, 9, S347–S353. [Google Scholar]
- Jin, J.; Mangal, U.; Seo, J.Y.; Kim, J.Y.; Ryu, J.H.; Lee, Y.H.; Lugtu, C.; Hwang, G.; Cha, J.Y.; Lee, K.J.; et al. Cerium oxide nanozymes confer a cytoprotective and bio-friendly surface micro-environment to methacrylate based oro-facial prostheses. Biomaterials 2023, 296, 122063. [Google Scholar] [CrossRef]
- Abualsaud, R.; Gad, M.M. Highlights on Drug and Ion Release and Recharge Capacity of Antimicrobial Removable Prostheses. Eur. J. Dent. 2022. ahead of print. [Google Scholar] [CrossRef]
- Lee, M.J.; Kim, M.J.; Mangal, U. Zinc-modified phosphate-based glass micro-filler improves Candida albicans resistance of auto-polymerized acrylic resin without altering mechanical performance. Sci. Rep. 2022, 12, 19456. [Google Scholar] [CrossRef]
- Raj, I.; Mozetic, M.; Jayachandran, V.P.; Jose, J.; Thomas, S.; Kalarikkal, N. Fracture resistant, antibiofilm adherent, self-assembled PMMA/ZnO nanoformulations for biomedical applications: Physico-chemical and biological perspectives of nano reinforcement. Nanotechnology 2018, 29, 305704. [Google Scholar] [CrossRef]
- Takahashi, Y.; Okamoto, M.; Komichi, S.; Imazato, S.; Nakatsuka, T.; Sakamoto, S.; Kimoto, K.; Hayashi, M. Application of a direct pulp capping cement containing S-PRG filler. Clin. Oral Investig. 2019, 23, 1723–1731. [Google Scholar] [CrossRef]
- Sabir, D.B.; Omer, Z.Q. Evaluation of Fluoride release from orthodontic acrylic resin by using two different polymerizations techniques: An In-Vitro Study. EDJ 2019, 2, 149–158. [Google Scholar] [CrossRef]
- Nakornchai, N.; Arksornnukit, M.; Kamonkhantikul, K.; Takahashi, H. The pH effect of solvent in silanization on fluoride released and mechanical properties of heat-cured acrylic resin containing fluoride-releasing filler. Dent. Mater. J. 2016, 35, 440–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piyananjaratsri, R.; Chaowicharat, E.; Saejok, K.; Susen, W.; Pankiew, A.; Srisuwan, A.; Jeamsaksiri, W.; Klunngien, N.; Hruanun, C.; Poyai, A. The effects of fluorine ion implantation on acrylic resin denture base. In Proceedings of the 2011 IEEE Nanotechnology Materials and Devices Conference, Jeju, Republic of Korea, 18–21 October 2011; pp. 577–580. [Google Scholar] [CrossRef]
- Agarwal, B.; Singh, R.D.; Raghav, D.; Shekhar, A.; Yadav, P. Determination of Fluoride Release and Strength of a Fluoride Treated Heat Cured Acrylic Resin. EAS J. Dent. Oral Med. 2019, 1, 108–111. [Google Scholar]
- Arksornnukit, M.; Takahashi, H.; Nishiyama, N. Effects of silane coupling agent amount on mechanical properties and hydrolytic durability of composite resin after hot water storage. Dent. Mater. J. 2004, 23, 31–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sepulveda, P.; Jones, J.R.; Hench, L.L. Characterization of melt-derived 45S5 and sol-gel-derived 58s bioactive glasses. J. Biomed. Mater. Res. 2001, 58, 734–740. [Google Scholar] [CrossRef]
- Par, M.; Spanovic, N.; Bjelovucic, R.; Marovic, D.; Schmalz, G.; Gamulin, O.; Tarle, Z. Long-term water sorption and solubility of experimental bioactive composites based on amorphous calcium phosphate and bioactive glass. Dent. Mater. J. 2019, 38, 555–564. [Google Scholar] [CrossRef] [Green Version]
- Farina, A.; Cecchin, D.; Soares, R.; Botelho, A.; Takahashi, J.; Mazzetto, M.; Marcelo, M. Evaluation of Vickers hardness of different types of acrylic denture base resins with and without glass fiber reinforcement. Gerodontology 2010, 29, e155–e160. [Google Scholar] [CrossRef]
- Duymus, Z.; Ozdogan, A.; Ulu, H.; Ozbayram, O. Evaluation the Vickers Hardness of Denture Base Materials. Open J. Stomatol. 2016, 6, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Tiskaya, M.; Al-Eesa, N.A.; Wong, F.S.L.; Hill, R.G. Characterization of the bioactivity of two commercial composites. Dent. Mat. 2019, 35, 1757–1768. [Google Scholar] [CrossRef]
- Al-Eesaa, N.A.; Johal, A.; Hill, R.G.; Wong, F.S.L. Fluoride-containing bioactive glass composite for orthodontic adhesives: Apatite formation properties. Dent. Mater. 2018, 34, 1127–1133. [Google Scholar] [CrossRef]
SiO2 | P2O5 | CaO | Na2O | CaF2 | CaCl2 | |
---|---|---|---|---|---|---|
S53P4 | 53.8% | 1.7% | 21.8% | 22.7% | 0 | 0 |
Biomin F | 36.0–40.0% | 4–6% | 28.0–30.0% | 22.0–24.0% | 1.5–3.0% | 0 |
45S5 | 46.1% | 2.6% | 26.9% | 24.4% | 0 | 0 |
Biomin C | 30.3–31.8% | 5.0–5.3% | 44.1–46.3% | 0 | 0 | 16.7–20.6% |
Biomin F [MPa] | Biomin C [MPa] | 53P4 [MPa] | 45S5 [MPa] | Resin [MPa] | |||
---|---|---|---|---|---|---|---|
Flexural strength 24 h | 78.13 ± 3.27 * | 78.69 ± 5.72 * | 80.75 ± 2.41 | 79.32 ± 2.24 | 86.5 ± 1.98 | ||
Flexural strength 60 days | 70.74 ± 1.39 ® | 69.88 ± 1.73 ® | 69.88 ± 1.73 ® | 69.2 ± 2.10 ® | 79.30 ± 2.55 ® |
Biomin F [µg/mm3] | Biomin C [µg/mm3] | 53P4 [µg/mm3] | 45S5 [µg/mm3] | Resin [µg/mm3] | |
---|---|---|---|---|---|
Sorption | 16.10 ± 2.23 | 1.49 ± 3.06 | 19.15 ± 2.37 * | 16.85 ± 3.04 | 14.05 ± 1.08 |
Solubility | 0.85 ± 0.29 | 2.60 ± 0.88 | 1.20 ± 0.24 | 1.00 ± 0.18 | 1.10 ± 0.34 |
Ca | P | Si | F | |
---|---|---|---|---|
[mg/L] | [mg/L] | [mg/L] | [mg/L] | |
Blank | ||||
pH 4 0 | 0 | 8.218 ± 1.23 | 0.00 | 0.00 |
pH 7 0 | 0 | 23.18 ± 3.48 | 0.00 | 0.00 |
Biomin F | ||||
pH4 1 day | 1.97 ± 0.3 | 33.12 ± 4.97 | 15.69 ± 2.35 | 3.0 ± 0.45 |
pH4 28 days | 0.57 ± 0.09 | 30.91 ± 4.64 | 27,26 ± 4,09 | 3.05 ± 0.46 |
pH4 42 days | 0.62 ± 0.09 | 30.47 ± 4.35 | 22.9 ± 3.44 | 3.1 ± 0.47 |
pH7 1 day | 1.24 ± 0.19 | 35.40 ± 5.31 | 11.72 ± 1.76 | 2.93 ± 0.44 |
pH7 28 days | 0.93 ± 0.14 | 32.56 ± 4.88 | 19.26 ± 2.89 | 3.29 ± 0.49 |
pH7 42 days | 0.74 ± 0.11 | 31.58 ± 4.74 | 20.85 ± 3.13 | 3.09 ± 0.42 |
Biomin C | ||||
pH4 1 day | 16.49 ± 2.47 | 32.57 ± 4.88 | 18.28 ± 2.74 | 0.00 |
pH4 28 days | 40.39 ± 6.06 | 20.38 ± 3.06 | 31.78 ± 4.77 | 0.00 |
pH4 42 days | 41.23 ± 6.19 | 26.43 ± 3.96 | 33.63 ± 5.04 | 0.00 |
pH7 1 day | 13.84 ± 2.08 | 33.17 ± 4.98 | 8.90 ± 1.33 | 0.00 |
pH7 28 days | 26.90 ± 4.04 | 15.26 ± 2.29 | 25.32 ± 3.80 | 0.00 |
pH7 42 days | 40.16 ± 6.02 | 17.50 ± 2.62 | 33.63 ± 5.04 | 0.00 |
45S53 | ||||
pH4 1 day | 2.78 ± 0.42 | 35.44 ± 5.32 | 19.33 ± 2.9 | 0.00 |
pH4 28 days | 3.35 ± 0.50 | 31.21 ± 4.68 | 74.12 ± 11.12 | 0.00 |
pH4 42 days | 1.61 ± 0.24 | 27.24 ± 4.09 | 65.54 ± 9.83 | 0.00 |
pH7 1 day | 1.07 ± 0.16 | 34.61 ± 0,5.19 | 17.60 ± 2.64 | 0.00 |
pH7 28 days | 0.27 ± 0.04 | 30.49 ± 4.57 | 43.90 ± 6.59 | 0.00 |
pH7 42 days | 1.04 ± 0.16 | 29.30 ± 4.40 | 53.16 ± 7.97 | 0.00 |
53P4 | ||||
pH4 1 day | 2.73 ± 0.41 | 31.61 ± 4.74 | 23.20 ± 3.48 | 0.00 |
pH4 28 days | 1.90 ± 0.29 | 25.83 ± 3.87 | 46.52 ± 6.99 | 0.00 |
pH4 42 days | 1.14 ± 0.17 | 27.32 ± 4.10 | 49.23 ± 7.38 | 0.00 |
pH7 1 day | 0.24 ± 0.03 | 32.72 ± 4.91 | 22.45 ± 3.37 | 0.00 |
pH7 28 days | 0.29 ± 0.04 | 28.83 ± 4.32 | 34.61 ± 5.19 | 0.00 |
pH7 42 days | 0.28 ± 0.04 | 24.95 ± 3.72 | 45.30 ± 6.80 | 0.00 |
PMMA | ||||
pH4 1 day | 0.35 ± 0.05 | 23.94 ± 3.59 | 0.00 | 0.00 |
pH4 28 days | 0.38 ± 0.06 | 26.22 ± 3.93 | 0.00 | 0.00 |
pH4 42 days | 0.53 ± 0.08 | 22.51 ± 3.38 | 0.00 | 0.00 |
pH7 1 day | 0.19 ± 0.03 | 19.80 ± 2.97 | 0.00 | 0.00 |
pH7 28 days | 0.25 ± 0.04 | 30.95 ± 4.64 | 0.00 | 0.00 |
pH7 42 days | 0.71 ± 0.11 | 29.38 ± 3.64 | 0.00 | 0.00 |
Vickers Hardness (HV) | SD | ||
---|---|---|---|
Biomin F | (A) | 13.20 | 0.74 |
S53P4 | (B) | 15.36 BE | 0.60 |
45S5 | (C) | 14.65 CE | 0.55 |
Biomin C | (D) | 14.31 DE | 0.32 |
PMMA | (E) | 12. 87 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raszewski, Z.; Chojnacka, K.; Mikulewicz, M.; Alhotan, A. Bioactive Glass-Enhanced Resins: A New Denture Base Material. Materials 2023, 16, 4363. https://doi.org/10.3390/ma16124363
Raszewski Z, Chojnacka K, Mikulewicz M, Alhotan A. Bioactive Glass-Enhanced Resins: A New Denture Base Material. Materials. 2023; 16(12):4363. https://doi.org/10.3390/ma16124363
Chicago/Turabian StyleRaszewski, Zbigniew, Katarzyna Chojnacka, Marcin Mikulewicz, and Abdulaziz Alhotan. 2023. "Bioactive Glass-Enhanced Resins: A New Denture Base Material" Materials 16, no. 12: 4363. https://doi.org/10.3390/ma16124363
APA StyleRaszewski, Z., Chojnacka, K., Mikulewicz, M., & Alhotan, A. (2023). Bioactive Glass-Enhanced Resins: A New Denture Base Material. Materials, 16(12), 4363. https://doi.org/10.3390/ma16124363