Electrospinning Preparation, Structure, and Properties of Fe3O4/Tb(acac)3phen/Polystyrene Bifunctional Microfibers
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Electrospinning of Fe3O4/Tb(acac)3phen/PS Microfibers
2.3. Characterization
3. Results and Discussion
3.1. Structure and Morphology of Bifunctional Fe3O4/Tb(acac)3phen/PS Microfibers
3.2. Photoluminescence Properties of Bifunctional Microfibers
3.3. Magnetic Properties of Bifunctional Microfibers
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, F.; Qi, H.N.; Xie, Y.R.; Da, X.; Shao, H.; Yu, W.S.; Li, F.; Dong, X.T. Conjugated Electrospinning-made Heterostructured TiO2//Bi2WO6 Janus Nanofibers for Ethanol Gas Sensing. Mater. Lett. 2023, 336, 133904. [Google Scholar] [CrossRef]
- Tiwari, A.; Singh, A.; Debnath, A.; Kaul, A.; Garg, N.; Mathur, R.; Singh, A.; Randhawa, K. Multifunctional Magneto-fluorescent Nanocarriers for Dual Mode Imaging and Targeted Drug Delivery. ACS Appl. Nano Mater. 2019, 2, 3060–3072. [Google Scholar] [CrossRef]
- Santos, D.M.D.; Dias, L.M.; Surur, A.K.; Moraes, D.A.D.; Pavarina, A.C.; Fontana, C.R.; Correa, D.S. Electrospun Composite Bead-on-string Nanofibers Containing CaO2 Nanoparticles and MnO2 Nanosheets as Oxygen-release Systems for Biomedical Applications. ACS Appl. Nano Mater. 2022, 5, 14425–14436. [Google Scholar] [CrossRef]
- Lidston, C.A.L.; Severson, S.M.; Abel, B.A.; Coates, G.W. Multifunctional Catalysts for Ring-opening Copolymerizations. ACS Catal. 2022, 12, 11037–11070. [Google Scholar] [CrossRef]
- Zink, J.L.; Lin, F.C. Probing the Local Nanoscale Heating Mechanism of a Magnetic Core in Mesoporous Silica Drug-delivery Nanoparticles using Fluorescence Depolarization. J. Am. Chem. Soc. 2020, 142, 5212–5220. [Google Scholar]
- Xia, L.Y.; Li, X.L.; Zhu, F.J.; Hu, S.H.; Huang, L. Luminescent and Magnetic α-Fe2O3@Y2O3: Eu3+ Bifunctional Hollow Microspheres for Drug Delivery. J. Phys. Chem. C 2017, 121, 20279–20286. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Peng, H.X.; Chen, W.H.; Yu, F.B. A Novel Multifunctional Carrier with Magnetic-NIR Luminescent-microwave Heating Characteristics for Drug Delivery. J. Drug Deliv. Sci. Technol. 2023, 79, 104106. [Google Scholar] [CrossRef]
- Ghazimoradi, M.; Tarlani, A.; Alemi, A.; Hamishehkar, H.; Ghorbani, M. pH-Responsive, Magnetic-luminescent Core/Shell carriers for Co-delivery of Anticancer Drugs (MTX & DOX) for Breast Cancer Treatment. J. Alloys Compd. 2023, 936, 168257. [Google Scholar]
- Swain, S.K.; Phaomer, G.; Triphathy, S.K.; Yaiphaba, N.B.; Devi, R.B.; Nayak, S.; Parida, B.B. Effect of β-cyclodextrin Decoration on Structural, Optical and Magnetic Properties of Luminescent Magnetic Nanoparticles and its Application as a Drug Carrier. J. Mol. Struct. 2022, 1247, 131330. [Google Scholar] [CrossRef]
- Müssig, S.; Reichstein, J.; Miller, F. Colorful Luminescent Magnetic Supraparticles: Expanding the Applicability, Information Capacity, and Security of Micrometer-Scaled Identification Taggants by Dual-Spectral Encoding. Small 2022, 18, 2107511. [Google Scholar] [CrossRef]
- Wang, L.D.; Fang, P.Y.; Zhao, Z.F.; Huang, Y.Y.; Liu, Z.W.; Bian, Z.Q. Rare Earth Complexes with 5d–4f Transition: New Emitters in Organic Light-Emitting Diodes. J. Phys. Chem. Lett. 2022, 13, 2686–2694. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.Q.; Cheng, Z.H.; Wei, X.; Yang, T.; Yu, Y.L.; Chen, M.L.; Wang, J.H. Highly Sensitive Detection of MicroRNA-21 with ICPMS via Hybridization Accumulation of Upconversion Nanoparticles. Anal. Chem. 2018, 90, 12116–12122. [Google Scholar] [CrossRef]
- Feng, P.F.; Yang, X.X.; Feng, X.X.; Zhao, G.D.; Li, X.C.; Gao, J.; Tang, Y.; Yan, C.H. Highly Stable Perovskite Quantum Dots Modified by Europium Complex for Dual-Responsive Optical Encoding. ACS Nano 2021, 15, 6266–6275. [Google Scholar] [CrossRef]
- Mohsin, Z.; Zaman, W.Q.; Aslam, S.M.; Shan, A.; Dai, Y.C.; Khan, I.M.; Niai, S.; Zhuang, Y.P.; Guo, M.J. Recent Advances of Magnetic Nanomaterials for Bioimaging, Drug Delivery, and Cell Therapy. ACS Appl. Nano Mater. 2022, 5, 10118–10136. [Google Scholar] [CrossRef]
- Chen, Z.W.; Zhu, C.D.; Yang, J.W.; Zhang, M.Y.; Yuan, J.M.; Shen, Y.; Zhou, J.W.; Huang, H.; Xu, D.S.; Crommen, J.; et al. Inside-Out Oriented Choline Phosphate-Based Biomimetic Magnetic Nanomaterials for Precise Recognition and Analysis of C-Reactive Protein. Anal. Chem. 2023, 95, 3532–3543. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Bae, K.H.; Kim, C.; Park, T.G. Clustered Magnetite Nanocrystals Cross-Linked with PEI for Efficient siRNA Delivery. Biomacromolecules 2011, 12, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Chen, W.; Liu, T.T.; Zhu, Y.L.; Jin, P.Y.; Wang, L.Y.; Liu, J.F.; Wei, Y.G.; Li, Y.D. Bifunctional Au-Fe3O4 Nanoparticles for Protein Separation. ACS Nano 2007, 1, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.R.; Tran, V.T.; Oh, S.; Kim, C.S.; Hong, J.C.; Kim, S.; Joo, Y.S.; Mun, S.; Kim, M.H.; Jung, J.W.; et al. Scalable Solvothermal Synthesis of Superparamagnetic Fe3O4 Nanoclusters for Bioseparation and Theragnostic Probes. ACS Appl. Mater. Interfaces 2018, 10, 41935–41946. [Google Scholar] [CrossRef]
- Lin, L.S.; Cong, Z.X.; Cao, J.B.; Ke, K.M.; Peng, Q.L.; Gao, J.H.; Yang, H.H.; Liu, G.; Chen, X.Y. Multifunctional Fe3O4@Polydopamine Core–Shell Nanocomposites for Intracellular mRNA Detection and Imaging-Guided Photothermal Therapy. ACS Nano 2014, 8, 3876–3883. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Ma, Q.L.; Yu, W.S.; Li, D.; Dong, X.T.; Liu, G.X.; Wang, J.X. Preparation of Janus Microfibers with Magnetic and Fluorescence Functionality via Conjugate Electro-Spinning. Mater. Design 2019, 170, 107701. [Google Scholar] [CrossRef]
- Ma, Q.L.; Dong, X.T.; Li, D.; Yu, W.S.; Wang, J.X.; Liu, G.X. Peculiarly Structured Janus Nanofibers Display Synchronous and Tuned Trifunctionality of Enhanced Luminescence, Electrical Conduction, and Superparamagnetism. ChemPlusChem 2018, 83, 108–116. [Google Scholar]
- Qi, H.N.; Wang, G.Y.; Hu, Y.L.; Shao, H.; Ma, Q.L.; Li, D.; Yu, W.S.; Chang, L.M.; Zhang, X.J.; Dong, X.T. Conjugate ETectro-spinning Towards Janus Nanofibers Array Synchronously Endowed with Conductive Anisotropy, Magnetism and Luminescence. Mater. Today Commun. 2022, 33, 104765. [Google Scholar] [CrossRef]
- Bi, F.; Dong, X.T.; Wang, J.X.; Liu, G.X. Electrospinning preparation and photoluminescence properties of Y3Al5O12: Tb3+ nanostructures. Luminescence 2015, 30, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.L.; Tian, J.; Qi, H.N.; Sheng, Y.Q.; Xie, Y.R.; Yu, W.S.; Dong, X.T. Electrospun Aeolotropic Electrically Conductive Neoteric Janus Nanostrips Array Functionalized by Enhancive Up-conversion Luminescence and Magnetism. Mater. Today Commun. 2020, 24, 101035. [Google Scholar] [CrossRef]
- Wu, P.; Ma, Q.L.; Yu, W.S.; Wang, J.X.; Liu, G.X.; Dong, X.T. Enhanced Fluorescence Achieved by Introducing Benzoic Acid as Coligand onto Tb3+ Grafted PAN Nanofibers. Opt. Mater. 2021, 111, 110619. [Google Scholar] [CrossRef]
- Yang, L.; Hong, F.; Shao, H.; Qi, H.; Xie, Y.R.; Yu, W.S.; Dong, X.T.; Li, D.; Ma, Q.L.; Liu, G.X. Distinctive Sandwich-Type Composite Film and Deuterogenic Three-Dimensional Triwall Tubes Affording Concurrent Aeolotropic Conduction, Magnetism, and Up-/Down-Conversion Luminescence. ACS Omega 2022, 7, 14332–14344. [Google Scholar] [CrossRef]
- Shao, H.; Yin, D.D.; Li, D.; Ma, Q.L.; Yu, W.S.; Dong, X.T. Simultaneous Visual Detection and Removal of Cu2+ with Electrospun Self-Supporting Flexible Amidated Polyacrylonitrile/Branched Polyethyleneimine Nanofiber Membranes. ACS Appl. Mater. Interfaces 2021, 13, 49288–49300. [Google Scholar] [CrossRef]
- Ogueri, K.S.; Laurencin, C.T. Nanofiber Technology for Regenerative Engineering. ACS Nano 2020, 14, 9347–9363. [Google Scholar] [CrossRef]
- Qin, R.F.; Liu, L.N. Electrospinning Synthesis of Fe3O4/Eu(DBM)3phen/PVP Bifunctional Microfibers and Their Structure, Luminescent and Magnetic Properties. J. Mater. Sci. Mater. Electron. 2021, 32, 18741–18750. [Google Scholar]
- Hu, Y.L.; Qi, H.N.; Shao, H.; Yang, L.; Ma, Q.L.; Sheng, Y.Q.; Xie, Y.R.; Yu, W.S.; Li, D.; Dong, X.T. Topologically Designed Electrospun Peculiar Three-sided Walnut Shaped Microfiber Array Membrane Exhibits Superior Poly-function. Cmopos. Sci. Technol. 2023, 233, 109923. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Su, Z.S.; Li, B.; Zhang, L.M.; Fan, D.; Ma, H.P. Recyclable Magnetic Mesoporous Nanocomposite with Improved Sensing Performance towards Nitrite. ACS Appl. Mater. Interfaces 2016, 8, 12344–12351. [Google Scholar] [CrossRef] [PubMed]
- Li, S.W.; Song, H.W.; Li, W.L.; Ren, X.G.; Lu, S.Z.; Pan, G.H.; Fan, L.B.; Yu, H.Q.; Zhang, H.; Qin, R.F.; et al. Improved Photoluminescence Properties of Ternary Terbium Complexes in Mesoporous Molecule Sieves. J. Phys. Chem. B 2006, 110, 23164–23169. [Google Scholar] [CrossRef] [PubMed]
- Diana, G.; Oldal, F.T.; Tibor, H.; Gyorgy, S. Green Electrospinning of Biodegradable Cellulose Acetate Nanofibrous Membranes with Tunable Porosity. ACS Sustain. Chem. Eng. 2023, 11, 994–1005. [Google Scholar]
- Tong, L.Z.; Shi, J.H.; Liu, D.M.; Li, Q.H.; Ren, X.Z.; Yang, H. Luminescent and Magnetic Properties of Fe3O4@SiO2@Y2O3:Eu3+ Composites with Core−Shell Structure. J. Phys. Chem. C 2012, 116, 7153–7157. [Google Scholar] [CrossRef]
- Zhang, H.; Song, H.W.; Dong, B.; Han, L.L.; Pan, G.H.; Bai, X.; Fan, L.B.; Lu, S.Z.; Zhao, H.F.; Wang, F. Electrospinning Preparation and Luminescence Properties of Europium Complex/Polymer Bifunctional Fibers. J. Phys. Chem. C 2008, 112, 9155–9162. [Google Scholar] [CrossRef]
- Zhang, H.; Song, H.W.; Yu, H.Q.; Bai, X.; Li, S.W.; Pan, G.H.; Dai, Q.L.; Wang, T.; Li, W.L.; Lu, S.Z.; et al. Electrospinning Preparation and Photoluminescence Properties of Rare-Earth Complex/Polymer Composite Fibers. Phys. Chem. C 2007, 111, 6524–6527. [Google Scholar] [CrossRef]
- Zhang, H.; Song, H.W.; Yu, H.Q.; Li, S.W.; Bai, X.; Pan, G.H.; Dai, Q.L.; Wang, T.; Li, W.L.; Lu, S.Z.; et al. Modified Photoluminescence Properties of Rare-Earth Complex/Polymer Composite Fibers Prepared by Electrospinning. Appl. Phys. Lett. 2007, 90, 103103. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.Y.; Yang, F.C.; Gao, Y.H. The Highly-Efficient Light-Emitting Diodes Based on Transition Metal Dichalcogenides: From Architecture to Performance. Nanoscale Adv. 2020, 2, 4323–4340. [Google Scholar] [CrossRef]
- Farani, M.R.; Azarian, M.; Hossein, H.H.S.; Abdolvahabi, Z.; Abgarmi, Z.M.; Moradi, A.; Mousavi, S.M.; Ashrafizadeh, M.; Makvandi, P.; Saeb, S.M.; et al. Folic Acid-Adorned Curcumin-Loaded Iron Oxide Nanoparticles for Cervical Cancer. ACS Appl. Bio Mater. 2022, 5, 1305–1318. [Google Scholar] [CrossRef]
- Losito, D.W.; Araujo, D.R.; Bezzon, V.D.N.; Filho, P.L.O.; Fonseca, F.L.A.; Chagas, C.S.; Barbosa, E.; Oliveira, L.P.; Fantini, M.C.A.; Ferreira, F.F.; et al. Mesoporous Silica-Fe3O4 Nanoparticle Composites as Potential Drug Carriers. ACS Appl. Bio Mater. 2022, 5, 1305–1318. [Google Scholar] [CrossRef]
Sample | Mass Ratio of Tb(acac)3phen Complexes to PS (%) | Mass Ratio of Fe3O4 Nanoparticles to PS (%) |
---|---|---|
20Fe20Tb | 20 | 20 |
20Fe30Tb | 30 | 20 |
20Fe40Tb | 40 | 20 |
20Fe50Tb | 50 | 20 |
20Fe0Tb | 0 | 20 |
0Fe40Tb | 40 | 0 |
PS | 0 | 0 |
Sample | Tb(acac)3phen | 0Fe40Tb | 20Fe40Tb |
---|---|---|---|
Content of Tb(acac)3phen (mass %) | 100 | 28.3 | 24.8 |
relative intensities of 5D4-7F5 | 1 | 2.15 | 1.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Qin, R.; Fan, X.; Wang, K.; Wang, X.; Wang, H.; Chen, Y.; Wang, J.; Wang, Y. Electrospinning Preparation, Structure, and Properties of Fe3O4/Tb(acac)3phen/Polystyrene Bifunctional Microfibers. Materials 2023, 16, 4409. https://doi.org/10.3390/ma16124409
Liu L, Qin R, Fan X, Wang K, Wang X, Wang H, Chen Y, Wang J, Wang Y. Electrospinning Preparation, Structure, and Properties of Fe3O4/Tb(acac)3phen/Polystyrene Bifunctional Microfibers. Materials. 2023; 16(12):4409. https://doi.org/10.3390/ma16124409
Chicago/Turabian StyleLiu, Lina, Ruifei Qin, Xiaofeng Fan, Kexin Wang, Xiujie Wang, Hao Wang, Yongjun Chen, Jintao Wang, and Yi Wang. 2023. "Electrospinning Preparation, Structure, and Properties of Fe3O4/Tb(acac)3phen/Polystyrene Bifunctional Microfibers" Materials 16, no. 12: 4409. https://doi.org/10.3390/ma16124409
APA StyleLiu, L., Qin, R., Fan, X., Wang, K., Wang, X., Wang, H., Chen, Y., Wang, J., & Wang, Y. (2023). Electrospinning Preparation, Structure, and Properties of Fe3O4/Tb(acac)3phen/Polystyrene Bifunctional Microfibers. Materials, 16(12), 4409. https://doi.org/10.3390/ma16124409