Linalool-Incorporated Synergistically Engineered Modified Liposomal Nanocarriers for Enhanced Transungual Delivery of Terbinafine against Onychomycosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Terbinafine Loaded Invasomes (TBF-IN) Formulation Preparation
2.2. Optimisation of Invasomes Using BBD
- Herein, Z indicates “Predicted response”;
- Xi indicates “independent variables”;
- The variables ki, ki2, and ki3 indicate “quadratic, linear as well as interactive coefficients”.
2.3. Characterisation of TBF-INpt
2.3.1. Vesicle Size, Zeta Potential, and PDI
2.3.2. EE
2.4. Invasomes Morphology
2.5. Formulation of Terbinafine-Loaded Invasomal Gel
2.6. pH and Texture Analysis of TBF-INopt Gel
2.7. In Vitro TBF Release Study
2.8. Nail Permeation Study
2.9. CLSM
2.10. Skin Irritation Investigation
2.11. Assessment of Antifungal Activity
Statistical Analysis
3. Results and Discussion
3.1. Optimisation of TBF-IN Formulation with BBD
3.1.1. Response (1): Effect of Independent Variables on PDI
+ 0.0081BC + 0.0728A2 + 0.0165 B2 − 0.0024 C2
3.1.2. Response (2): Effect of Independent Variables on Vesicle Size
− 0.8300BC + 3.53A2 + 3.92B2 + 3.86C2
3.1.3. Response (3): Effect of Independent Variables on EE
3.2. Characterisation
3.3. Invasomes Morphology
3.4. pH and Texture Analysis of the TBF-INopt Gel
3.5. In Vitro Drug Release Study
3.6. Nail Permeation Study
3.7. CLSM
3.8. Skin Irritation Investigation
3.9. Antifungal Activity of the TBF Invasomal Gel
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, A.K.; Stec, N. Recent advances in therapies for onychomycosis and its management. F1000Research 2019, 8, 968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Youssef, A.; Kallel, A.; Azaiz, Z.; Jemel, S.; Bada, N.; Chouchen, A.; Belhadj-Salah, N.; Fakhfakh, N.; Belhadj, S.; Kallel, K. Onychomycosis: Which fungal species are involved? Experience of the Laboratory of Parasitology-Mycology of the Rabta Hospital of Tunis. J. Mycol. Med. 2018, 28, 651–654. [Google Scholar] [CrossRef] [PubMed]
- Lipner, S.R.; Scher, R.K. Onychomycosis: Treatment and prevention of recurrence. J. Am. Acad. Dermatol. 2019, 80, 853–867. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.; Targhotra, M.; Sahoo, P.; Chauhan, M.K. Onychomycosis: Novel strategies for treatment. J. Drug Deliv. Sci. Technol. 2020, 57, 101774. [Google Scholar] [CrossRef]
- Gupta, A.K.; Ryder, J.E.; Johnson, A.M. Cumulative meta-analysis of systemic antifungal agents for the treatment of ony-chomycosis. Br. J. Dermatol. 2004, 150, 537–544. [Google Scholar] [CrossRef]
- Antifungal drugs. Treat. Guidel. Med. Lett. 2009, 7, 95–102.
- Bennett, J.E. Antifungal agents. In Goodman & Gilman’s the Pharmacological Basis of Therapeutics, 12th ed.; Brunton, L., Chabner, B., Knollman, B., Eds.; McGraw-Hill: New York, NY, USA, 2011; pp. 1571–1592. [Google Scholar]
- Angelo, T.; Borgheti-Cardoso, L.N.; Gelfuso, G.M. Chemical and physical strategies in onychomycosis topical treatment: A review. Med. Mycol. 2017, 55, 461–475. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.K.; Ryder, J.E.; Lynch, L.E.; Tavakkol, A. The use of terbinafine in the treatment of onychomycosis in adults and special populations: A review of the evidence. J. Drugs Dermatol. 2005, 4, 302–308. [Google Scholar]
- Gupta, A.K.; Scher, R.K.; De Doncker, P. Current management of onychomycosis: An overview. Dermatol. Clin. 1997, 15, 121–135. [Google Scholar] [CrossRef]
- De Doncker, P. Pharmacokinetics of oral antifungal agents. Dermatol. Ther. 1997, 3, 46–57. [Google Scholar]
- Bseiso, E.A.; Nasr, M.; Sammour, O.A.; Abd El Gawad, N.A. Novel nail penetration enhancer containing vesicles “nPEVs” for treatment of onychomycosis. Drug Deliv. 2015, 23, 2813–2819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkeeb, R.; AliKhan, A.; Elkeeb, L.; Hui, X.; Maibach, H.I. Transungual drug delivery: Current status. Int. J. Pharm. 2010, 384, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Adin, S.N.; Gupta, I.; Aqil, M.; Mujeeb, M.; Ahad, A. BBD Driven Optimization of Extraction of Therapeutically Active Xan-thanoid Mangiferin from Mangifera indica L. Leaves and its Antioxidant Activity. Pharmacogn. Res. 2023, 15, 84–93. [Google Scholar] [CrossRef]
- Adin, S.N.; Gupta, I.; Aqil, M.; Mujeeb, M. Computer-aided Box-Behnken outlook towards optimization of extraction of bai-calin from Oroxylum indicum L. stem barks. Pharmacogn. Mag. 2022, 18, 808–814. [Google Scholar]
- Gupta, I.; Adin, S.N.; Aqil, M.; Mujeeb, M.; Sultana, Y. Quality by design-based development and validation of an HPLC method for simultaneous estimation of pregabalin and piperine in dual drug-loaded liposomes. Biomed. Chromatogr. 2022, 37, e5510. [Google Scholar] [CrossRef]
- Adin, S.N.; Gupta, I.; Ahad, A.; Aqil, M.; Mujeeb, M. A developed high-performance thin-layer chromatography method for the determination of baicalin in Oroxylum indicum L. and its antioxidant activity. JPC J. Planar Chromatogr. Mod. TLC 2022, 35, 383–393. [Google Scholar] [CrossRef]
- Gupta, I.; Adin, S.N.; Aqil, M.; Mujeeb, M. High-performance thin-layer chromatography method development and validation for quantification of naringin in different extracts of Citrus sinensis L. and its antioxidant activity. JPC J. Planar Chromatogr. Mod. TLC 2022, 35, 463–471. [Google Scholar] [CrossRef]
- Gupta, I.; Adin, S.N.; Aqil, M.; Mujeeb, M. QbD-based extraction of Naringin from Citrus sinensis L. peel and its antioxidant activity. Pharmacogn. Res. 2023, 15, 145–154. [Google Scholar] [CrossRef]
- Gupta, I.; Adin, S.N.; Aqil, M.; Mujeeb, M.; Ahad, A. Computer-aided box–behnken outlook towards optimization of extraction of piperine from Piper longum L. Fruits. World J. Pharm. Res. 2022, 11, 1439–1455. [Google Scholar] [CrossRef]
- Babaie, S.; Del Bakhshayesh, A.R.; Ha, J.W.; Hamishehkar, H.; Kim, K.H. Invasome: A Novel Nanocarrier for Transdermal Drug Delivery. Nanomaterials 2020, 17, 341. [Google Scholar] [CrossRef] [Green Version]
- Adin, S.N.; Gupta, I.; Ali, A.; Aqil, M.; Mujeeb, M.; Sultana, Y. Investigation on utility of some novel terpenes on transungual delivery of fluconazole for the management of onychomycosis. J. Cosmet. Dermatol. 2022, 21, 5103–5110. [Google Scholar] [CrossRef] [PubMed]
- Gupta, I.; Adin, S.N.; Aqil, M.; Mujeeb, M.; Sultana, Y. Investigation on utility of some novel terpenes on transungual delivery of terbinafine for the management of onychomycosis. Dermatol. Prat. Concept. 2022, 12, e2022202. [Google Scholar] [CrossRef] [PubMed]
- Hoda, Q.; Aqil, M.; Ahad, A.; Imam, S.S.; Praveen, A.; Qadir, A.; Iqbal, Z. Optimization of valencene containing lipid vesicles for boosting the transungual delivery of itraconazole. 3 Biotech 2021, 11, 137. [Google Scholar] [CrossRef]
- Gupta, I.; Adin, S.N.; Aqil, M.; Mujeeb, M.; Akhtar, M. Application of QbD-based approach to the development and validation of an RP-HPLC method for simultaneous estimation of pregabalin and naringin in dual-drug loaded liposomes. Biomed. Chromatogr. 2023, 37, e5623. [Google Scholar] [CrossRef]
- Adin, S.N.; Gupta, I.; Rashid, A.; Alhamhoom, Y.; Aqil, M.; Mujeeb, M. Nanotransethosomes for enhanced transdermal delivery of mangiferin against rheumatoid arthritis: Formulation, characterization, invivo pharmacokinetic and pharmacodynamic evaluation. Drug Deliv. 2023, 30, 2173338. [Google Scholar] [CrossRef]
- Adin, S.N.; Gupta, I.; Aqil, M.; Mujeeb, M. Application of QbD based approach in development and validation of RP-HPLC method for simultaneous estimation of methotrexate and baicalin in dual-drug-loaded liposomes. Biomed. Chromatogr. 2023, 37, e5581. [Google Scholar] [CrossRef]
- Adin, S.N.; Gupta, I.; Aqil, M.; Mujeeb, M. Baicalin loaded transethosomes for rheumatoid arthritis: Development, characterization, pharmacokinetic and pharmacodynamic evaluation. J. Drug Deliv. Sci. Technol. 2023, 81, 104209. [Google Scholar] [CrossRef]
- Gupta, I.; Adin, S.N.; Rashid, A.; Alhamhoom, Y.; Aqil, M.; Mujeeb, M. Spanlastics as a Potential Approach for Enhancing the Nose-To-Brain Delivery of Piperine: In Vitro Prospect and In Vivo Therapeutic Efficacy for the Management of Epilepsy. Pharmaceutics 2023, 15, 641. [Google Scholar] [CrossRef]
- Adin, S.N.; Gupta, I.; Aqil, M.; Mujeeb, M.; Najmi, A.K. Application of a Quality by Design-based approach in development and validation of an RP-HPLC method for simultaneous estimation of methotrexate and mangiferin in dual drug-loaded liposomes. Biomed. Chromatogr. 2023, e5648. [Google Scholar] [CrossRef]
- Mahtab, A.; Anwar, M.; Mallick, N.; Naz, Z.; Jain, G.K.; Ahmad, F.J. Transungual Delivery of Ketoconazole Nanoemulgel for the Effective Management of Onychomycosis. AAPS PharmSciTech 2016, 17, 1477–1490. [Google Scholar] [CrossRef]
- Sohail, M.; Rabbi, F.; Younas, A.; Hussain, A.; Yu, B.; Li, Y.; Iqbal, S.; Ullah, K.H.; Qadeer, A.; Aquib, M. Herbal Bioactive–Based Nano Drug Delivery Systems. In Herbal Bioactive-Based Drug Delivery Systems; Elsevier: Amsterdam, The Netherlands, 2022; pp. 169–193. [Google Scholar]
- Grillo, R.; Dias, F.V.; Querobino, S.M.; Alberto-Silva, C.; Fraceto, L.F.; de Paula, E.; de Araujo, D.R. Influence of Hybrid Pol-ymeric Nanoparticle/Thermosensitive Hydrogels Systems on Formulation Tracking and in Vitro Artificial Membrane Per-meation: A Promising System for Skin Drug-Delivery. Colloids Surf. B Biointerfaces 2019, 174, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.B.; Sammeta, S.M.; Vaka, S.R.; Narasimha Murthy, S. A study on the effect of inorganic salts in transungual drug de-livery of terbinafine. J. Pharm. Pharmacol. 2009, 61, 431–437. [Google Scholar] [CrossRef]
- Murthy, S.N.; Vaka, S.R.; Sammeta, S.M.; Nair, A.B. TranScreen-N: Method for rapid screening of trans-ungual drug delivery enhancers. J. Pharm. Sci. 2009, 98, 4264–4271. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.; Chakraborty, B.; Murthy, S.N. Effect of Polyethylene Glycols on the Trans-Ungual Delivery of Terbinafine. Curr. Drug Deliv. 2010, 7, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2, MR17–MR71. [Google Scholar] [CrossRef] [Green Version]
- Raina, H.; Kaur, S.; Jindal, A.B. Development of efavirenz loaded solid lipid nanoparticles: Risk assessment, quality-by-design (QbD) based optimisation and physicochemical characterisation. J. Drug Deliv. Sci. Technol. 2017, 39, 180–191. [Google Scholar] [CrossRef]
- Mahaparale, P.R.; Ikam, S.A.N.; Chavan, M.S. Development and Evaluation of Terbinafine Hydrochloride Polymeric Microsponges for Topical Drug Delivery. Indian J. Pharm. Sci. 2018, 80, 1086–1092. [Google Scholar] [CrossRef]
- Soliman, G.M. Nanoparticles as safe and effective delivery systems of antifungal agents: Achievements and challenges. Int. J. Pharm. 2017, 523, 15–32. [Google Scholar] [CrossRef]
- Elsherif, N.I.; Shamma, R.N.; Abdelbary, G. Terbinafine Hydrochloride Trans-ungual Delivery via Nanovesicular Systems: In Vitro Characterization and Ex Vivo Evaluation. AAPS PharmSciTech 2017, 18, 551–562. [Google Scholar] [CrossRef]
- Naumann, S.; Meyer, J.-P.; Kiesow, A.; Mrestani, Y.; Wohlrab, J.; Neubert, R.H.H. Controlled nail delivery of a novel lipo-philic antifungal agent using various modern drug carrier systems as well as in vitro and ex vivo model systems. J. Control. Release 2014, 180, 60–70. [Google Scholar] [CrossRef]
- Shirwaikar, A.; Thomas, T.; Shirwaikar, A.; Lobo, R.; Prabhu, K. Treatment of onychomycosis: An update. Indian J. Pharm. Sci. 2008, 70, 710–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mertin, D.; Lippold, B.C. In-vitro permeability of the human nail and of a keratin membrane from bovine hooves: Predic-tion of the penetration rate of antimycotics through the nail plate and their efficacy. J. Pharm. Pharmacol. 1997, 49, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Salah, S.; Awad, G.E.A.; Makhlouf, A.I.A. Improved vaginal retention and enhanced antifungal activity of miconazole mi-crosponges gel: Formulation development and in vivo therapeutic efficacy in rats. Eur. J. Pharm. Sci. 2018, 114, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Moin, A.; Deb, T.K.; Osmani, R.A.M.; Bhosale, R.R.; Hani, U. Fabrication, characterization, and evaluation of microsponge delivery system for facilitated fungal therapy. J. Basic Clin. Pharm. 2016, 7, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Ou, R.; Guan, S.; Ye, X.; Hu, B.; Zhang, Y.; Lu, S.; Zhou, Y.; Yuan, Z.; Zhang, J.; et al. A novel drug delivery gel of terbinafine hydrochloride with high penetration for external use. Drug Deliv. 2015, 22, 1086–1093. [Google Scholar] [CrossRef] [PubMed]
- Şen, M.; Uzun, C.; Güven, O. Controlled release of terbinafine hydrochloride from pH sensitive poly(acrylamide/maleic acid) hydrogels. Int. J. Pharm. 2000, 203, 149–157. [Google Scholar] [CrossRef]
- Chen, K.; Puri, V.; Michniak-Kohn, B. Iontophoresis to Overcome the Challenge of Nail Permeation: Considerations and Optimizations for Successful Ungual Drug Delivery. AAPS J. 2021, 23, 25. [Google Scholar] [CrossRef]
- Kevin Li, S.; Hao, J.; Liddell, M. Chapter 11—Electrotransport across Membranes in Biological Media: Electrokinetic Theories and Applications in Drug Delivery. In Transport in Biological Media; Becker, S.M., Kuznetsov, A.V., Eds.; Elsevier: Boston, MA, USA, 2013; pp. 417–454. [Google Scholar]
- Lakshmi, P.K.; Kalpana, B.; Domaraju, P. Invasomes-novel Vesicular Carriers for Enhanced Skin Permeation. Syst. Rev. Pharm. 2013, 4, 26. [Google Scholar] [CrossRef] [Green Version]
Variables | Levels | ||
---|---|---|---|
Low (−1) | Medium (0) | High (+1) | |
Independent Variables | |||
A: Phospholipon 90G (mg) | 50 | 60 | 70 |
B: Linalool (%) | 0.25 | 0.5 | 0.75 |
C: Ethanol (%) | 20 | 30 | 40 |
Dependent Variable | |||
Y1: PDI Y2: Vesicle size (nm) Y3: Entrapment efficiency (%) |
Formulation | Independent Variables | Dependent Variables | ||||
---|---|---|---|---|---|---|
A | B | C | Y1 | Y2 | Y3 | |
1 | 70 | 0.5 | 40 | 0.1856 ± 0.007 | 141.35 ± 4.09 | 63.65 ± 1.34 |
2 | 50 | 0.25 | 30 | 0.2325 ± 0.003 | 176.07 ± 3.92 | 80.54 ± 1.68 |
3 | 50 | 0.75 | 30 | 0.2054 ± 0.009 | 109.96 ± 2.98 | 55.12 ± 2.09 |
4 | 70 | 0.5 | 20 | 0.3425 ± 0.009 | 186.89 ± 2.98 | 80.54 ± 2.09 |
5 | 60 | 0.5 | 30 | 0.1612 ± 0.003 | 146.3 ± 3.92 | 74.23 ± 1.68 |
6 | 60 | 0.5 | 30 | 0.1634 ± 0.003 | 145.8 ± 3.92 | 74.97 ± 1.68 |
7 | 50 | 0.5 | 40 | 0.2086 ± 0.003 | 116.96 ± 4.03 | 58.13 ± 2.98 |
8 | 60 | 0.5 | 30 | 0.1602 ± 0.012 | 146.2 ± 4.26 | 75.01 ± 1.62 |
9 | 60 | 0.5 | 30 | 0.1599 ± 0.005 | 145.7 ± 4.36 | 74.67 ± 1.72 |
10 | 60 | 0.5 | 30 | 0.1608 ± 0.003 | 146.5 ± 4.67 | 74.88 ± 1.87 |
11 | 60 | 0.75 | 40 | 0.0926 ± 0.009 | 93.82 ± 2.98 | 44.62 ± 2.09 |
12 | 60 | 0.75 | 20 | 0.1793 ± 0.004 | 145.91 ± 4.23 | 70.12 ± 1.62 |
13 | 60 | 0.25 | 20 | 0.2416 ± 0.003 | 212.29 ± 3.92 | 80.62 ± 1.68 |
14 | 60 | 0.25 | 40 | 0.1873 ± 0.002 | 163.52 ± 2.09 | 71.32 ± 1.76 |
15 | 70 | 0.75 | 30 | 0.2229 ± 0.004 | 130.04 ± 2.32 | 66.89 ± 1.23 |
16 | 50 | 0.5 | 20 | 0.1892 ± 0.008 | 168.78 ± 3.07 | 74.09 ± 2.09 |
17 | 70 | 0.25 | 30 | 0.3408 ± 0.003 | 198.15 ± 3.92 | 79.18 ± 1.68 |
Quadratic model | R2 | Adjusted R2 | Predicted R2 | S.D. | %CV | |
Response (Y1) | 0.9995 | 0.9989 | 0.9943 | 0.0021 | 1.02 | |
Response (Y2) | 0.9998 | 0.9996 | 0.9979 | 0.5902 | 0.3897 | |
Response (Y3) | 0.9992 | 0.9983 | 0.9915 | 0.4178 | 0.5925 |
Release Kinetics | R2 | Equation | X-Axis | Y-Axis |
---|---|---|---|---|
Korsmeyer–Peppas | 0.976 | Mt/M∞ = Ktn | Log fraction of drug released | Log time |
Higuchi | 0.989 | Mt = M0 + kht1/2 | Fraction of drug released | √time |
Zero-order release | 0.951 | Mt = M0 + k0 t | Fraction of drug released | time |
First-order release | 0.966 | ln Mt = ln M0 + k1 t | Log% drug remaining | time |
Rat | Positive Control | TBF-IN Gel | TBF-Marketed Gel | |||
---|---|---|---|---|---|---|
Edema | Erythema | Edema | Erythema | Edema | Erythema | |
1 | 2 | 4 | 0 | 0 | 0 | 1 |
2 | 3 | 3 | 1 | 0 | 1 | 0 |
3 | 3 | 3 | 0 | 0 | 0 | 0 |
Mean ± SD | 2.67 ±0.31 | 3.33 ±0.42 | 0.33 ±0.02 | 0 ± 0 | 0.33 ±0.02 | 0.33 ± 0.02 |
Zone of Inhibition (in mm) | ||||
---|---|---|---|---|
S. No. | Microbe | Control Vehicle | TBF-IN Gel | TBF-Marketed Gel |
1 | Trichophyton rubrum | 0 ± 0 | 30 ± 2 | 19 ± 3 |
2 | Candida albicans | 0 ± 0 | 28 ± 2 | 12 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, I.; Adin, S.N.; Rashid, M.A.; Alhamhoom, Y.; Aqil, M.; Mujeeb, M. Linalool-Incorporated Synergistically Engineered Modified Liposomal Nanocarriers for Enhanced Transungual Delivery of Terbinafine against Onychomycosis. Materials 2023, 16, 4424. https://doi.org/10.3390/ma16124424
Gupta I, Adin SN, Rashid MA, Alhamhoom Y, Aqil M, Mujeeb M. Linalool-Incorporated Synergistically Engineered Modified Liposomal Nanocarriers for Enhanced Transungual Delivery of Terbinafine against Onychomycosis. Materials. 2023; 16(12):4424. https://doi.org/10.3390/ma16124424
Chicago/Turabian StyleGupta, Isha, Syeda Nashvia Adin, Md Abdur Rashid, Yahya Alhamhoom, Mohd. Aqil, and Mohd. Mujeeb. 2023. "Linalool-Incorporated Synergistically Engineered Modified Liposomal Nanocarriers for Enhanced Transungual Delivery of Terbinafine against Onychomycosis" Materials 16, no. 12: 4424. https://doi.org/10.3390/ma16124424