Evolution of Chernobyl Corium in Water: Formation of Secondary Uranyl Phases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chernobyl Corium-Containing Sample
2.2. Hydrothermal Alteration Experiment
2.3. Chemical Composition
2.4. Single-Crystal X-ray Diffraction Studies
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burakov, B.E.; Anderson, E.B.; Shabalev, S.I.; Strykanova, E.E.; Ushakov, S.V.; Trotabas, M.; Blanc, J.-Y.; Winter, P.; Duco, J. The Behaviour of Nuclear Fuel in First Days of the Chernobyl Accident. MRS Online Proc. Libr. 1997, 465, 1297–1308. [Google Scholar] [CrossRef]
- Burakov, B.E.; Shabalev, S.I.; Anderson, E.B. Principal Features of Chernobyl Hot Particles: Phase, Chemical and Radionuclide Compositions. In Role of Interfaces in Environmental Protection; NATO Science Series; Barany, S., Ed.; Springer: Dordrecht, The Netherlands, 2003; Volume 24, pp. 145–151. [Google Scholar]
- Burakov, B.E. Lava-like materials formed and solidified during Chernobyl accident. In Comprehensive Nuclear Materials, 2nd ed.; Konings, R.J.M., Stoller, R.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 2, pp. 525–540. [Google Scholar]
- Shiryaev, A.A.; Burakov, B.E.; Yapaskurt, V.O.; Zubekhina, B.Y.; Averin, A.A.; Petrov, Y.; Orlova, V.; Silantyeva, E.; Nickolsky, M.S.; Zirlin, V.A.; et al. Products of molten corium-metal interaction in Chernobyl accident: Composition and leaching of radionuclides. Progr. Nucl. Energy 2022, 152, 104373. [Google Scholar] [CrossRef]
- Borovoi, A.A.; Lagunenko, A.S.; Pazukhin, E.M. Estimating the Amount of Fuel in Cellar Building 305/2 at Chernobyl Unit 4. At. Energy 1998, 84, 295–299. [Google Scholar] [CrossRef]
- Burakov, B.E.; Anderson, E.B.; Strykanova, E.E. Secondary uranium minerals on the surface of Chernobyl “lava”. MRS Online Proc. Libr. 1997, 465, 1309–1311. [Google Scholar] [CrossRef]
- Teterin, Y.A.; Baev, A.S.; Bogatov, S.A. X-Ray photoelectron study of samples containing reactor fuel from “lava” and products growing on it which formed at Chernobyl NPP due to the accident. J. Electron Spectrosc. Relat. Phenom. 1994, 68, 685–694. [Google Scholar] [CrossRef]
- Zubekhina, B.Y.; Burakov, B.E. Leaching of actinides and other radionuclides from matrices of Chernobyl “lava” as analogues of vitrified HLW. J. Chem. Thermodyn. 2017, 114, 25–29. [Google Scholar] [CrossRef]
- Zubekhina, B.Y.; Burakov, B.E.; Bogdanova, O.G.; Petrov, Y.Y. Leaching of 137Cs from Chernobyl fuel debris: Corium and “lava”. Radiochim. Acta 2019, 107, 1155–1160. [Google Scholar] [CrossRef]
- Zubekhina, B.; Burakov, B.; Silanteva, E.; Petrov, Y.; Yapaskurt, V.; Danilovich, D. Long-Term Aging of Chernobyl Fuel Debris: Corium and “Lava”. Sustainability 2021, 13, 1073. [Google Scholar] [CrossRef]
- Olkhovyk, Y.A.; Ojovan, M.I. Corrosion Resistance of Chernobyl NPP Lava Fuel-Containing Masses. Innov. Corros. Mater. Sci. 2015, 5, 36–42. [Google Scholar] [CrossRef]
- Piret-Meunier, J.; Piret, P. Nouvelle détermination de la structure cristalline de la bequerelite. Bull. Minéral. 1982, 105, 606–610. [Google Scholar] [CrossRef]
- Deliens, M.; Piret, P. La phurcalite, Ca2(UO2)3(PO4)2(OH)4·4H2O, nouveau minéral. Bull. Minéral. 1978, 101, 356–358. [Google Scholar] [CrossRef]
- Piret, P.; Declercq, J.-P. Phurcalite. Acta Cryst. 1978, B34, 1677–1679. [Google Scholar] [CrossRef]
- Fraser, W. Diffractometers for modern X-ray crystallography: The XtaLAB Synergy X-ray diffractometer platform. Rigaku J. 2020, 36, 37–47. [Google Scholar]
- CrysAlisPro Software System; Version 1.171.41.94a; Rigaku Oxford Diffraction: Oxford, UK, 2021.
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal structure determination. Acta Crystallogr. 2015, A71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Schoep, A. Sur la becquerélite, nouveau minéral radioactif. C.R. Hebd. Séances Acad. Sci. 1922, 174, 1240–1242. [Google Scholar]
- Frondel, J.W.; Cuttitta, F. Studies of uranium minerals (XII): The status of billietite and becquerelite. Amer. Mineral. 1953, 30, 1019–1024. [Google Scholar]
- Christ, C.L.; Clark, J.R. Crystal chemical studies of uranyl oxide hydrates. Amer. Mineral. 1960, 45, 1026–1061. [Google Scholar]
- Pagoaga, M.K.; Appleman, D.E.; Stewart, J.M. Crystal structures and crystal chemistry of the uranyl oxide hydrates becquerelite, billietite, and protasite. Amer. Mineral. 1987, 72, 1230–1238. [Google Scholar]
- Burns, P.C.; Li, Y. The structures of becquerelite and Sr-exchanged becquerelite. Amer. Mineral. 2002, 87, 550–557. [Google Scholar] [CrossRef]
- Amayri, S.; Arnold, T.; Foerstendorf, H.; Geipel, G.; Bernhard, G. Spectroscopic characterization of synthetic becquerelite, Ca[UO2)6O4(OH)6]·8H2O, and swartzite, CaMg[UO2(CO3)3]·12H2O. Can. Mineral. 2004, 42, 953–962. [Google Scholar] [CrossRef]
- Schindler, M.; Hawthorne, F.C.; Burns, P.C.; Maurice, P.A. Dissolution of uranyl-oxide-hydroxy-hydrate minerals. II. Becquerelite. Can. Mineral. 2006, 44, 1207–1225. [Google Scholar] [CrossRef]
- Frost, R.L.; Čejka, J.; Weier, M.L. Raman spectroscopic study of the uranyl oxyhydroxide hydrates: Becquerelite, billietite, curite, schoepite and vandendriesscheite. J. Raman Spec. 2007, 38, 460–466. [Google Scholar] [CrossRef] [Green Version]
- Braithwaite, R.S.W.; Paar, W.H.; Chisholm, J.E. Phurcalite from Dartmoor, Southwest England, and its identity with ‘nisaite’ from Portugal. Mineral. Mag. 1989, 53, 583–589. [Google Scholar] [CrossRef]
- Atencio, D.; Neumann, R.; Silva, A.J.G.C.; Mascarenhas, Y.P. Phurcalite from Perus, São Paulo, Brazil, and redetermination of its crystal structure. Can. Mineral. 1991, 29, 95–105. [Google Scholar]
- Plášil, J. Crystal structure of phurcalite, Ca2[(UO2)3O2(PO4)2]·7H2O, from Jáchymov. Bull. Mineral. Petrolog. 2020, 28, 276–280. [Google Scholar] [CrossRef]
- Plášil, J.; Kiefer, B.; Ghazisaeed, S.; Philippo, S. Hydrogen bonding in the crystal structure of phurcalite, Ca2[(UO2)3O2(PO4)2]·7H2O: Single-crystal X-ray study and TORQUE calculations. Acta Cryst. 2020, B76, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Burns, P.C.; Ewing, R.C.; Hawthorne, F.C. The crystal chemistry of hexavalent uranium: Polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. Can. Mineral. 1997, 35, 1551–1570. [Google Scholar]
- Gagné, O.C.; Hawthorne, F.C. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Cryst. 2015, B71, 561–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lussier, A.J.; Lopez, R.A.K.; Burns, P.C. A revised and expanded structure hierarchy of natural and synthetic hexavalent uranium compounds. Can. Mineral. 2016, 54, 177–283. [Google Scholar] [CrossRef]
- Miller, M.L.; Finch, R.J.; Burns, P.C.; Ewing, R.C. Description and classification of uranium oxide hydrate sheet anion topologies. J. Mater. Res. 1996, 11, 3048–3056. [Google Scholar] [CrossRef]
- Burns, P.C. The Crystal Chemistry of Uranium. In Uranium: Mineralogy, Geochemistry, and the Environment; Burns, P.C., Finch, R., Eds.; Walter de Gruyter GmbH & Co KG: Munich, Germany, 1999; Volume 38, pp. 23–90. [Google Scholar]
- Krivovichev, S.V.; Plášil, J. Mineralogy and Crystallography of Uranium. In Uranium: From Cradle to Grave; Burns, P.C., Sigmon, G.E., Eds.; Mineralogical Association of Canada Short Courses: Quebec, QC, Canada, 2013; Volume 43, pp. 15–119. [Google Scholar]
- Krivovichev, S.V.; Burns, P.C. Actinide compounds containing hexavalent cations of the VI group elements (S, Se, Mo, Cr, W). In Structural Chemistry of Inorganic Actinide Compounds; Krivovichev, S.V., Burns, P.C., Tananaev, I.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 95–182. [Google Scholar]
- Krivovichev, S.V. Structural Crystallography of Inorganic Oxysalts; Oxford University Press: Oxford, UK, 2008; 303p. [Google Scholar]
- Burns, P.C. The structure of compreignacite, K2[(UO2)3O2(OH)3]2(H2O)7. Can. Mineral. 1998, 36, 1061–1067. [Google Scholar]
- Burns, P.C.; Hanchar, J.M. The structure of masuyite, Pb[(UO2)3O3(OH)2](H2O)3, and its relationship to protasite. Can. Mineral. 1999, 37, 1483–1491. [Google Scholar]
- Cahill, C.L.; Burns, P.C. The structure of agrinierite: A Sr-containing uranyl oxide hydrate mineral. Amer. Mineral. 2000, 85, 1294–1297. [Google Scholar] [CrossRef]
- Loopstra, B.O. Crystal-structure of α-U3O8. J. Inorg. Nucl. Chem. 1977, 39, 713–1714. [Google Scholar] [CrossRef]
- Li, Y.P.; Burns, P.C. The structures of two sodium uranyl compounds relevant to nuclear waste disposal. J. Nucl. Mater. 2001, 299, 219–226. [Google Scholar] [CrossRef]
- Gurzhiy, V.V.; Tyumentseva, O.S.; Krivovichev, S.V.; Krivovichev, V.G.; Tananaev, I.G. Mixed uranyl sulfate-selenates: Variable composition and crystal structures. Cryst. Growth Des. 2016, 16, 4482–4492. [Google Scholar] [CrossRef]
- Gurzhiy, V.V.; Tyumentseva, O.S.; Krivovichev, S.V.; Tananaev, I.G. Selective Se-for-S substitution in Cs-bearing uranyl compounds. J. Solid State Chem. 2017, 248, 126–133. [Google Scholar] [CrossRef]
- Gurzhiy, V.V.; Tyumentseva, O.S.; Izatulina, A.R.; Krivovichev, S.V.; Tananaev, I.G. Chemically Induced Polytypic Phase Transitions in the Mg[(UO2)(TO4)2(H2O)](H2O)4 (T = S, Se) System. Inorg. Chem. 2019, 58, 14760–14768. [Google Scholar] [CrossRef]
- Kornyakov, I.V.; Gurzhiy, V.V.; Szymanowski, J.E.S.; Zhang, L.; Perry, S.N.; Krivovichev, S.V.; Burns, P.C. A Novel family of Np(VI) oxysalts: Crystal structures, calorimetry, thermal behavior and comparison with U(VI) compounds. Cryst. Growth Des. 2019, 19, 2811–2819. [Google Scholar] [CrossRef]
- Gurzhiy, V.V.; Kornyakov, I.V.; Szymanowski, J.E.S.; Felton, D.; Tyumentseva, O.S.; Krzhizhanovskaya, M.G.; Krivovichev, S.V.; Burns, P.C. Chemically-induced structural variations of a family of Cs2[(AnO2)2(TO4)3] (An = U, Np; T = S, Se, Cr, Mo) compounds: Thermal behavior, calorimetry studies and spectroscopy characterization of Cs uranyl sulfate and selenate. J. Solid State Chem. 2020, 282, 121077. [Google Scholar] [CrossRef]
- Kornyakov, I.V.; Tyumentseva, O.S.; Krivovichev, S.V.; Tananaev, I.G.; Gurzhiy, V.V. Crystal chemistry of the M2+[(UO2)(T6+O4)2(H2O)](H2O)4 (M2+ = Mg, Mn, Fe, Co, Ni and Zn; T6+ = S, Se) compounds: The interplay between chemical composition, pH and structural architecture. CrystEngComm 2021, 23, 1140–1148. [Google Scholar] [CrossRef]
- Demartin, F.; Diella, V.; Donzelli, S.; Gramaccioli, C.M.; Pilati, T. The importance of accurate crystal structure determination of uranium minerals. I. Phosphuranylite KCa(H3O)3(UO2)7(PO4)4O4·8H2O. Acta Crystallogr. 1991, B47, 439–446. [Google Scholar] [CrossRef]
- Locock, A.; Burns, P.C. The crystal structure of bergenite, a new geometrical isomer of the phosphuranilite group. Can. Mineral. 2003, 41, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Serezhkina, L.B.; Peresypkina, E.V.; Virovets, A.V.; Pushkin, D.V.; Verevkin, A.G. Synthesis and structure of Cs[UO2(SeO4)(OH)]·nH2O (n = 1.5 or 1). Crystallogr. Rep. 2010, 55, 381–385. [Google Scholar] [CrossRef]
- Juillerat, C.A.; Moore, E.E.; Kocevski, V.; Besmann, T.; Zur Loye, H.-C. A Family of Layered Phosphates Crystallizing in a Rare Geometrical Isomer of the Phosphuranylite Topology: Synthesis, Characterization, and Computational Modeling of A4[(UO2)3O2(PO4)2] (A = Alkali Metal) Exhibiting Intralayer Ion Exchange. Inorg. Chem. 2018, 57, 4726–4738. [Google Scholar] [CrossRef] [PubMed]
- Gurzhiy, V.V.; Plášil, J. Structural complexity of natural uranyl sulfates. Acta Crystallogr. 2019, B75, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Gurzhiy, V.V.; Kuporev, I.V.; Kovrugin, V.M.; Murashko, M.N.; Kasatkin, A.V.; Plášil, J. Crystal Chemistry and Structural Complexity of Natural and Synthetic Uranyl Selenites. Crystals 2019, 9, 639. [Google Scholar] [CrossRef] [Green Version]
- Gurzhiy, V.V.; Kalashnikova, S.A.; Kuporev, I.V.; Plášil, J. Crystal Chemistry and Structural Complexity of the Uranyl Carbonate Minerals and Synthetic Compounds. Crystals 2021, 11, 704. [Google Scholar] [CrossRef]
- GOST 6713-91; Low-Alloyed Structural Rolled Stock for Bridge Building. GostPerevod: Moscow, Russia, Interstate Standard. 1991.
- Tyumentseva, O.S.; Kornyakov, I.V.; Britvin, S.N.; Zolotarev, A.A.; Gurzhiy, V.V. Crystallographic Insights into Uranyl Sulfate Minerals Formation: Synthesis and Crystal Structures of Three Novel Cesium Uranyl Sulfates. Crystals 2019, 9, 660. [Google Scholar] [CrossRef] [Green Version]
- Kornyakov, I.V.; Tyumentseva, O.S.; Krivovichev, S.V.; Gurzhiy, V.V. Dimensional evolution in hydrated K+-bearing uranyl sulfates: From 2D-sheets to 3D-frameworks. CrystEngComm 2020, 22, 4621–4629. [Google Scholar] [CrossRef]
- Gelfort, E. Nutzung der Spaltprodtikte nach Aufarbeitung Ausgedienter Brennelemente. Atomwirtsch. Atomtech. 1985, 30, 32–36. [Google Scholar]
- Finch, R.J.; Ewing, R.C. The corrosion of uraninite under oxidizing conditions. J. Nucl. Mater. 1992, 190, 133–156. [Google Scholar] [CrossRef]
- Finch, R.; Murakami, T. Systematics and paragenesis of Uranium minerals. Rev. Mineral. 1999, 38, 91–179. [Google Scholar]
- Hofmann, P.; Politis, C. The kinetic of the uranium dioxide-zircaloy reactions at high temperatures. J. Nucl. Mater. 1979, 87, 375–397. [Google Scholar] [CrossRef]
- Skokan, A.; Holleck, H. The significance of chemical reactions between reactor materials under core melting conditions. Nucl. Eng. Des. 1987, 103, 107–113. [Google Scholar] [CrossRef]
- Shiozawa, S.; Ichikawa, M.; Fujishiro, T. Studies of the UO2-zircaloy chemical interaction and fuel rod relocation modes in a severe fuel damage accident. J. Nucl. Mater. 1988, 154, 116–122. [Google Scholar] [CrossRef]
- Kim, K.T.; Olander, D.R. Dissolution of uranium dioxide by molten zircaloy. II. Convection-controlled reaction. J. Nucl. Mater. 1988, 154, 102–115. [Google Scholar] [CrossRef]
- Hayward, P.J.; George, I.M. Dissolution of UO2 in molten zircaloy-4 part 2: Phase evolution during dissolution and cooling. J. Nucl. Mater. 1994, 208, 43–52. [Google Scholar] [CrossRef]
- Hayward, P.J.; Hofmann, P.; Stuckert, J.; Berdyshev, A.V.; Veshchunov, M.S. UO2 Dissolution by Molten Zircaloy: New Experimental Results and Modeling; Forschungszentrum Karlsruhe GmbH: Karlsruhe, Germany, 1999; 81p. [Google Scholar]
- Wronkiewicz, D.J.; Bates, J.K.; Gerding, T.J.; Veleckis, E.; Tani, B.S. Uranium release and secondary phase formation during unsaturated testing of UO2 at 90 °C. J. Nucl. Mater. 1992, 190, 107–127. [Google Scholar] [CrossRef]
- Alwan, A.K.; Williams, P.A. The aqueous chemistry of uranium minerals. Part 2. Minerals of the liebigite group. Mineral. Mag. 1980, 43, 665–667. [Google Scholar] [CrossRef] [Green Version]
- Clark, D.L.; Hobart, D.E.; Neu, M.P. Actinide carbonate complexes and their importance in actinide environmental chemistry. Chem. Rev. 1995, 95, 25–48. [Google Scholar] [CrossRef]
- Stefaniak, E.A.; Alsecz, A.; Frost, R.; Mathe, Z.; Sajo, I.E.; Torok, S.; Worobiec, A.; Van Grieken, R. Combined SEM/EDX and micro-Raman spectroscopy analysis of uranium minerals from a former uranium mine. J. Hazard Mater. 2009, 168, 416–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plášil, J. Oxidation–hydration weathering of uraninite: The current state-of-knowledge. J. Geosci. 2014, 59, 99–114. [Google Scholar] [CrossRef] [Green Version]
- Driscoll, R.J.P.; Wolverson, D.; Mitchels, J.M.; Skelton, J.M.; Parker, S.C. A Raman spectroscopic study of uranyl minerals from Cornwall, UK. RSC Adv. 2014, 4, 59137–59149. [Google Scholar] [CrossRef] [Green Version]
- Pauliš, P.; Babka, K.; Sejkora, J.; Škácha, P. Uranové Minerály České Republiky a Jejich Nejvýznamnější Naleziště; Kuttna: Kutná Hora, Czech Republic, 2016; 570p. (In Czech) [Google Scholar]
- Plášil, J. Uranyl-oxide hydroxy-hydrate minerals: Their structural complexity and evolution trends. Eur. J. Mineral. 2018, 30, 237–251. [Google Scholar] [CrossRef]
- Grambow, B.; Nitta, A.; Shibata, A.; Koma, Y.; Utsunomiya, S.; Takami, R.; Fueda, K.; Ohnuki, T.; Jegou, C.; Laffolley, H.; et al. Ten years after the NPP accident at Fukushima: Review on fuel debris behavior in contact with water. J. Nucl. Sci. Technol. 2022, 59, 1–24. [Google Scholar] [CrossRef]
Sample | Bqr_1 | Bqr_2 | Phu |
---|---|---|---|
Crystal System | Orthorhombic | Orthorhombic | Orthorhombic |
Space group | Pna21 | Pna21 | Pbca |
a (Å) | 13.8517 (5) | 13.9073 (6) | 17.4042 (3) |
b (Å) | 14.9553 (6) | 15.0023 (6) | 16.0025 (3) |
c (Å) | 12.3753 (5) | 12.4269 (6) | 13.5595 (2) |
V (Å3) | 2563.62 (17) | 2592.8 (2) | 3776.47 (11) |
Molecular weight | 1970.43 | 1970.43 | 1239.67 |
μ (mm–1) | 38.083 | 37.655 | 26.508 |
Temperature (K) | 293 (2) | 293 (2) | 293 (2) |
Z | 4 | 4 | 8 |
Dcalc (g/cm3) | 5.105 | 5.048 | 4.361 |
Crystal size (mm3) | 0.030 × 0.020 × 0.002 | 0.052 × 0.034 × 0.021 | 0.120 × 0.010 × 0.001 |
Radiation | MoKα | MoKα | MoKα |
Total reflections | 23016 | 14077 | 40125 |
Unique reflections | 5722 | 5031 | 5503 |
Angle range 2θ (°) | 6.48–55.00 | 6.46–55.00 | 6.46–60.00 |
Reflections with |Fo| ≥ 4σF | 4698 | 4284 | 4834 |
Rint | 0.0546 | 0.0394 | 0.0428 |
Rσ | 0.0536 | 0.0481 | 0.0278 |
R1 (|Fo| ≥ 4σF) | 0.0392 | 0.0352 | 0.0203 |
wR2 (|Fo| ≥ 4σF) | 0.0762 | 0.0762 | 0.0360 |
R1 (all data) | 0.0550 | 0.0452 | 0.0273 |
wR2 (all data) | 0.0803 | 0.0801 | 0.0373 |
S | 1.058 | 1.053 | 1.034 |
ρmin, ρmax, e/Å3 | −3.355, 2.194 | −2.203, 1.142 | −0.919, 1.017 |
CSD | 2256603 | 2256604 | 2256605 |
Becquerelite | ||||||
Reference | [21] | [12] | [23] | [24] | Bqr_1 | Bqr_2 |
Sp. Gr. | Pn21a | Pn21a | Pn21a | Pna21 | Pna21 | |
a, Å | 13.920 (5) | 13.86 (2) | 13.8378 (8) | 13.8527 (5) | 13.8517 (5) | 13.9073 (6) |
b, Å | 12.450 (5) | 12.30 (1) | 12.3781 (12) | 12.3929 (4) | 14.9553 (6) | 15.0023 (6) |
c, Å | 15.090 (5) | 14.92 (3) | 14.9238 (9) | 14.9297 (5) | 12.3753 (5) | 12.4269 (6) |
V, Å3 | 2620.79 | 2543.53 | 2556.23 | 2563.2 (1) | 2563.62 (17) | 2592.8 (2) |
Phurcalite * | ||||||
Reference | [13,14] | [28] | [29] | [30] | [31] | Phu |
a, Å | 17.426 (3) | 17.44 (2) | 17.415 (2) | 17.3785 (9) | 17.4652 (5) | 17.4042 (3) |
b, Å | 16.062 (3) | 15.87 (2) | 16.035 (3) | 15.9864 (8) | 16.0068 (5) | 16.0025 (3) |
c, Å | 13.592 (3) | 13.56 (3) | 13.598 (3) | 13.5477 (10) | 13.5710 (4) | 13.5595 (2) |
V, Å3 | 3804 | 3753 | 3797 (2) | 3763.8 (4) | 3793.9 (2) | 3776.47 (11) |
Bqr_1 | Bqr_2 | |||
---|---|---|---|---|
Bond | BVS | BVS | ||
U1–O1 | 1.80 (2) | 1.622 | 1.796 (18) | 1.634 |
U1–O2 | 1.829 (19) | 1.534 | 1.823 (18) | 1.552 |
<U1–OUr> | 1.815 | 1.810 | ||
U1–O13 | 2.200 (18) | 0.750 | 2.248 (16) | 0.684 |
U1–O14 | 2.16 (2) | 0.811 | 2.220 (17) | 0.722 |
U1–OH17 | 2.64 (2) | 0.321 | 2.64 (2) | 0.321 |
U1–OH18 | 2.42 (3) | 0.491 | 2.42 (3) | 0.491 |
U1–OH19 | 2.45 (2) | 0.464 | 2.42 (2) | 0.491 |
<U1–Oeq> | 2.374 | Σ (U1) = 5.993 | 2.390 | Σ (U1) = 5.896 |
U2–O3 | 1.790 (14) | 1.653 | 1.797 (13) | 1.631 |
U2–O4 | 1.813 (12) | 1.582 | 1.803 (11) | 1.613 |
<U2–OUr> | 1.802 | 1.800 | ||
U2–O13 | 2.254 (18) | 0.676 | 2.249 (16) | 0.683 |
U2–O15 | 2.252 (19) | 0.679 | 2.253 (17) | 0.678 |
U2–OH17 | 2.47 (2) | 0.446 | 2.47 (2) | 0.446 |
U2–OH20 | 2.626 (12) | 0.330 | 2.663 (11) | 0.308 |
U2–OH21 | 2.37 (2) | 0.541 | 2.422 (19) | 0.489 |
<U2–Oeq> | 2.394 | Σ (U2) = 5.908 | 2.411 | Σ (U2) = 5.847 |
U3–O5 | 1.85 (2) | 1.473 | 1.854 (19) | 1.462 |
U3–O6 | 1.77 (2) | 1.718 | 1.780 (18) | 1.686 |
<U3–OUr> | 1.810 | 1.817 | ||
U3–O15 | 2.265 (18) | 0.662 | 2.223 (17) | 0.718 |
U3–O16 | 2.27 (2) | 0.656 | 2.250 (17) | 0.682 |
U3–OH18 | 2.50 (3) | 0.421 | 2.50 (3) | 0.421 |
U3–OH21 | 2.60 (2) | 0.347 | 2.648 (19) | 0.317 |
U3–OH22 | 2.33 (2) | 0.584 | 2.37 (2) | 0.541 |
<U3–Oeq> | 2.393 | Σ (U3) = 5.862 | 2.398 | Σ (U3) = 5.825 |
U4–O7 | 1.826 (13) | 1.543 | 1.821 (11) | 1.558 |
U4–O8 | 1.816 (13) | 1.573 | 1.808 (11) | 1.597 |
<U4–OUr> | 1.821 | 1.815 | ||
U4–O14 | 2.24 (2) | 0.695 | 2.28 (2) | 0.643 |
U4–O16 | 2.25 (3) | 0.682 | 2.19 (2) | 0.765 |
U4–OH18 | 2.578 (12) | 0.362 | 2.607 (12) | 0.343 |
U4–OH19 | 2.38 (2) | 0.531 | 2.40 (2) | 0.510 |
U4–OH22 | 2.42 (2) | 0.491 | 2.43 (2) | 0.482 |
<U4–Oeq> | 2.374 | Σ (U4) = 5.876 | 2.381 | Σ (U4) = 5.898 |
U5–O9 | 1.79 (2) | 1.653 | 1.811 (17) | 1.588 |
U5–O10 | 1.741 (19) | 1.817 | 1.724 (16) | 1.878 |
<U5–OUr> | 1.766 | 1.768 | ||
U5–O13 | 2.270 (17) | 0.656 | 2.248 (15) | 0.684 |
U5–O14 | 2.29 (2) | 0.631 | 2.218 (19) | 0.725 |
U5–OH17 | 2.37 (2) | 0.541 | 2.403 (19) | 0.508 |
U5–OH19 | 2.69 (2) | 0.292 | 2.73 (2) | 0.270 |
U5–OH20 | 2.40 (3) | 0.510 | 2.44 (3) | 0.473 |
<U5–Oeq> | 2.404 | Σ (U5) = 6.101 | 2.408 | Σ (U5) = 6.125 |
Bqr_1 | Bqr_2 | |||
---|---|---|---|---|
Bond | BVS | BVS | ||
U6–O11 | 1.795 (19) | 1.638 | 1.787 (16) | 1.663 |
U6–O12 | 1.842 (18) | 1.496 | 1.852 (15) | 1.467 |
<U6–OUr> | 1.819 | 1.820 | ||
U6–O15 | 2.180 (18) | 0.780 | 2.245 (16) | 0.688 |
U6–O16 | 2.18 (2) | 0.780 | 2.29 (2) | 0.631 |
U6–OH20 | 2.41 (3) | 0.501 | 2.37 (3) | 0.541 |
U6–OH21 | 2.43 (2) | 0.482 | 2.399 (19) | 0.511 |
U6–OH22 | 2.78 (3) | 0.245 | 2.76 (2) | 0.255 |
<U6–Oeq> | 2.396 | Σ (U6) = 5.921 | 2.413 | Σ (U6) = 5.757 |
Ca1–O1 | 2.45 (2) | 0.265 | 2.466 (19) | 0.255 |
Ca1–O3 | 3.024 (17) | 0.065 | 3.049 (18) | 0.061 |
Ca1–O5 | 2.43 (2) | 0.278 | 2.43 (2) | 0.278 |
Ca1–O12 | 2.36 (2) | 0.330 | 2.362 (17) | 0.329 |
Ca1–H2O23 | 2.47 (2) | 0.252 | 2.49 (2) | 0.240 |
Ca1–H2O24 | 2.44 (2) | 0.272 | 2.42 (2) | 0.285 |
Ca1–H2O25 | 2.38 (3) | 0.315 | 2.36 (3) | 0.330 |
Ca1–H2O26 | 2.56 (2) | 0.203 | 2.59 (2) | 0.188 |
<Ca1–O> | 2.514 | Σ (Ca1) = 1.980 | 2.521 | Σ (Ca1) = 1.968 |
Angle | ||||
U1–O13–U2 | 121.9 (8) | 120.7 (7) | ||
U1–OH17–U2 | 99.2 (7) | 99.8 (7) | ||
U1–OH18–U3 | 146.2 (6) | 147.3 (5) | ||
U1–O14–U4 | 123.0 (11) | 119.3 (8) | ||
U1–OH18–U4 | 101.4 (9) | 100.9 (7) | ||
U1–OH19–U4 | 143.8 (10) | 146.3 (9) | ||
U1–O13–U5 | 118.8 (8) | 118.3 (7) | ||
U1–O14–U5 | 117.4 (11) | 119.0 (9) | ||
U1–OH17–U5 | 98.6 (8) | 98.6 (7) | ||
U1–OH19–U5 | 96.9 (8) | 96.8 (7) | ||
U2–O15–U3 | 116.8 (8) | 119.3 (7) | ||
U2–OH21–U3 | 101.3 (8) | 99.2 (6) | ||
U2–O13–U5 | 116.4 (7) | 118.1 (7) | ||
U2–OH17–U5 | 146.0 (9) | 145.4 (8) | ||
U2–OH20–U5 | 99.8 (9) | 98.0 (7) | ||
U2–O15–U6 | 120.0 (8) | 117.9 (7) | ||
U2–OH20–U6 | 99.2 (9) | 99.8 (8) | ||
U2–OH21–U6 | 140.1 (10) | 140.4 (8) | ||
U3–O16–U4 | 117.9 (10) | 122.3 (9) | ||
U3–OH18–U4 | 99.3 (8) | 99.0 (7) | ||
U3–OH22–U4 | 145.1 (11) | 142.9 (9) | ||
U3–O15–U6 | 122.6 (9) | 122.1 (8) | ||
U3–O16–U6 | 117.3 (11) | 114.1 (8) | ||
U3–OH21–U6 | 98.0 (8) | 97.9 (7) | ||
U3–OH22–U6 | 99.3 (9) | 99.0 (7) | ||
U4–O14–U5 | 119.4 (9) | 121.6 (8) | ||
U4–OH19–U5 | 100.7 (7) | 99.6 (7) | ||
U4–O16–U6 | 124.4 (9) | 122.8 (8) | ||
U4–OH22–U6 | 97.6 (7) | 98.1 (7) | ||
U5–OH20–U6 | 145.9 (5) | 147.3 (5) |
D–H···A | D–H, Å | H···A, Å | D···A, Å | <DHA, ° |
---|---|---|---|---|
OH groups | ||||
OH17–HH17···OW29 | 0.90 | 1.87 | 2.74 (3) | 163 |
OH18–HH18···O5 | 0.90 | 2.61 | 3.05 (4) | 110 |
OH18–HH18···O8 | 0.90 | 2.43 | 2.98 (2) | 120 |
OH18–HH18···OW25 | 0.90 | 2.26 | 2.95 (2) | 133 |
OH19–HH19···OW26 | 0.90 | 2.10 | 2.95 (3) | 157 |
OH20–HH20···OW27 | 0.85 | 2.03 | 2.84 (2) | 157 |
OH21–HH21···OW28 | 0.90 | 1.75 | 2.58 (4) | 154 |
OH22–HH22···OW30 | 0.90 | 2.00 | 2.82 (3) | 152 |
H2O molecules | ||||
OW23–HW2A···O8 | 1.01 | 2.03 | 2.95 (3) | 151 |
OW23–HW2A···OW27 | 1.01 | 2.50 | 3.19 (3) | 126 |
OW23–HW2B···O3 | 0.99 | 2.13 | 3.09 (2) | 162 |
OW24–HW2C···O8 | 1.04 | 1.87 | 2.90 (4) | 167 |
OW24–HW2D···O10 | 1.00 | 2.10 | 3.06 (3) | 158 |
OW25–HW2E···OW30 | 0.88 | 1.91 | 2.75 (4) | 160 |
OW25–HW2F···OW23 | 0.89 | 1.96 | 2.84 (3) | 177 |
OW26–HW2G···O9 | 0.95 | 2.11 | 2.97 (4) | 150 |
OW26–HW2H···O4 | 0.95 | 2.11 | 3.01 (3) | 159 |
OW27–HW2I···O2 | 0.95 | 2.18 | 3.05 (2) | 151 |
OW27–HW2I···O8 | 0.95 | 2.53 | 3.05 (2) | 114 |
OW27–HW2J···O11 | 1.02 | 1.99 | 2.94 (2) | 154 |
OW28–HW2K···O7 | 0.85 | 2.01 | 2.78 (2) | 151 |
OW28–HW2L···O9 | 0.94 | 2.41 | 3.21 (4) | 143 |
OW28–HW2L···OW29 | 0.94 | 2.11 | 2.81 (2) | 130 |
OW29–HW2M···O4 | 0.79 | 2.57 | 3.09 (4) | 124 |
OW29–HW2M···O7 | 0.79 | 2.13 | 2.72 (3) | 132 |
OW29–HW2N···O11 | 0.91 | 2.13 | 3.00 (3) | 162 |
OW30–HW3A···O10 | 0.92 | 2.12 | 3.01 (2) | 163 |
OW30–HW3B···O4 | 0.85 | 2.17 | 2.96 (2) | 155 |
Bond | BVS | Bond | BVS | ||
---|---|---|---|---|---|
U1–O12 | 1.798 (3) | 1.628 | Ca1–18 | 2.258 (3) | 0.424 |
U1–O14 | 1.807 (3) | 1.600 | Ca1–H2O22 | 2.347 (4) | 0.341 |
<U1–OUr> | 1.803 | Ca1–H2O17 | 2.369 (3) | 0.323 | |
U1–O1 | 2.282 (3) | 0.641 | Ca1–O13 | 2.388 (3) | 0.308 |
U1–O3 | 2.284 (3) | 0.638 | Ca1–H2O20 | 2.496 (3) | 0.237 |
U1–O11 | 2.350 (3) | 0.562 | Ca1–O4 | 2.502 (3) | 0.233 |
U1–O8 | 2.425 (3) | 0.486 | Ca1–O7 | 2.606 (3) | 0.181 |
U1–O15 | 2.512 (3) | 0.411 | <Ca1–O> | 2.424 | Σ (Ca1) = 2.048 |
<U1–Oeq> | 2.371 | Σ (U1) = 5.967 | |||
Ca2–O13 | 2.368 (3) | 0.324 | |||
U2–O5 | 1.813 (3) | 1.582 | Ca2–H2O21 | 2.387 (4) | 0.309 |
U2–O7 | 1.822 (3) | 1.555 | Ca2–H2O16 | 2.403 (3) | 0.297 |
<U2–OUr> | 1.818 | Ca2–O9 | 2.407 (3) | 0.294 | |
U2–O1 | 2.252 (3) | 0.679 | Ca2–H2O19 | 2.426 (4) | 0.281 |
U2–O3 | 2.295 (3) | 0.625 | Ca2–H2O20 | 2.563 (3) | 0.201 |
U2–O6 | 2.334 (3) | 0.580 | Ca2–O5 | 2.662 (3) | 0.158 |
U2–O2 | 2.348 (3) | 0.564 | Ca2–O14 | 2.764 (3) | 0.123 |
U2–O9 | 2.451 (3) | 0.463 | <Ca2–O> | 2.498 | Σ (Ca2) = 1.988 |
<U2–Oeq> | 2.336 | Σ (U2) = 6.047 | |||
Mn3–H2O16 x2 | 2.207 (3) | 0.326 | |||
U3–O10 | 1.806 (3) | 1.603 | Mn3–H2O19 x2 | 2.266 (4) | 0.283 |
U3–O4 | 1.813 (3) | 1.582 | Mn3–O12 x2 | 2.387 (3) | 0.212 |
<U3–OUr> | 1.810 | <Mn3–O> | 2.287 | Σ (Mn3) = 1.643 | |
U3–O3 | 2.221 (3) | 0.721 | |||
U3–O1 | 2.238 (3) | 0.697 | Angle | ||
U3–O15 | 2.470 (3) | 0.446 | U1–O1–U2 | 110.61 (11) | |
U3–O6 | 2.569 (3) | 0.369 | U1–O3–U2 | 109.00 (11) | |
U3–O2 | 2.683 (3) | 0.296 | U1–O1–U3 | 122.17 (11) | |
U3–O8 | 2.790 (3) | 0.241 | U1–O3–U3 | 122.54 (11) | |
<U3–Oeq> | 2.495 | Σ (U3) = 5.955 | U1–O8–U3 | 98.23 (10) | |
U1–O15–U3 | 105.18 (10) | ||||
P1–O13 | 1.518 (3) | 1.304 | U2–O1–U3 | 120.68 (11) | |
P1–O11 | 1.525 (3) | 1.282 | U2–O2–U3 | 101.99 (9) | |
P1–O6 | 1.546 (3) | 1.216 | U2–O3–U3 | 120.23 (11) | |
P1–O2 | 1.552 (3) | 1.198 | U2–O6–U3 | 105.38 (10) | |
<P1–O> | 1.535 | Σ (P1) = 5.000 | U1–O11–P1 | 137.45 (17) | |
U1–O8–P2 | 141.20 (18) | ||||
P2–O18 | 1.504 (3) | 1.351 | U1–O15–P2 | 141.54 (17) | |
P2–O8 | 1.556 (3) | 1.186 | U2–O2–P1 | 135.21 (16) | |
P2–O9 | 1.556 (3) | 1.186 | U2–O6–P1 | 147.36 (17) | |
P2–O15 | 1.567 (3) | 1.154 | U2–O9–P2 | 131.28 (15) | |
<P2–O> | 1.546 | Σ (P2) = 4.876 | U3–O2–P1 | 97.93 (13) | |
U3–O6–P1 | 102.86 (13) | ||||
U3–O8–P2 | 93.81 (14) | ||||
U3–O15–P2 | 106.76 (15) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurzhiy, V.V.; Burakov, B.E.; Zubekhina, B.Y.; Kasatkin, A.V. Evolution of Chernobyl Corium in Water: Formation of Secondary Uranyl Phases. Materials 2023, 16, 4533. https://doi.org/10.3390/ma16134533
Gurzhiy VV, Burakov BE, Zubekhina BY, Kasatkin AV. Evolution of Chernobyl Corium in Water: Formation of Secondary Uranyl Phases. Materials. 2023; 16(13):4533. https://doi.org/10.3390/ma16134533
Chicago/Turabian StyleGurzhiy, Vladislav V., Boris E. Burakov, Bella Yu. Zubekhina, and Anatoly V. Kasatkin. 2023. "Evolution of Chernobyl Corium in Water: Formation of Secondary Uranyl Phases" Materials 16, no. 13: 4533. https://doi.org/10.3390/ma16134533
APA StyleGurzhiy, V. V., Burakov, B. E., Zubekhina, B. Y., & Kasatkin, A. V. (2023). Evolution of Chernobyl Corium in Water: Formation of Secondary Uranyl Phases. Materials, 16(13), 4533. https://doi.org/10.3390/ma16134533