Topological Avenue for Efficient Decontamination of Large Volumes of Fluids via UVC Irradiation of Packed Metamaterials
Abstract
:1. Introduction
2. Packing of Metamaterial Elements
2.1. Entire or Crushed Spheres
2.2. Optical Fibres
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sabino, C.P.; Ball, A.R.; Baptista, M.S.; Dai, T.; Hamblin, M.R.; Ribeiro, M.S.; Santos, A.L.; Sellera, F.P.; Tegos, G.P.; Wainwright, M. Light-based technologies for management of COVID-19 pandemic crisis. J. Photochem. Photobiol. B Biol. 2020, 212, 111999. [Google Scholar] [CrossRef]
- Mankar, V.; Dhengre, A.; Agashe, N.; Rodge, H.; Chandi, D.H.; Chandi, D.H. Ultraviolet irradiation doses for coronavirus inactivation—Review and analysis of coronavirus photo inactivation studies. Int. J. Health Sci. (Qassim) 2022, 6, 466–472. [Google Scholar] [CrossRef]
- Kalyani, V.L.; Mathur, P.; Makwana, N.; Singhal, N. Study on Coronavirus (COVID-19) and how UVC Light helps to Destroy it and its Applications. J. Manag. Eng. Inf. Technol. 2020, 7, 2394–8124. [Google Scholar] [CrossRef]
- Buonanno, M.; Welch, D.; Shuryak, I.; Brenner, D.J. Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. Sci. Rep. 2020, 10, 10285. [Google Scholar] [CrossRef]
- COVID-19 and Fiber Optic Cable Assemblies—Fiber Optic Center. Available online: https://focenter.com/covid-19-and-fiber-optic-cable-assemblies/ (accessed on 8 December 2022).
- Baer, T.M.; Baer, C.E. Optics and the COVID-19 Pandemic. Optics & Photonics News Magazine, 1 May 2020. [Google Scholar]
- Lukose, J.; Chidangil, S.; George, S.D. Optical technologies for the detection of viruses like COVID-19: Progress and prospects. Biosens. Bioelectron. 2021, 178, 113004. [Google Scholar] [CrossRef]
- Perepechkin, L.P.; Perepechkina, N.P. Chemistry and technology of chemical fibres hollow fibres* for medical applications: A review a few words on mass transfer processes in the body. Fibre Chem. 1999, 31, 411–420. [Google Scholar] [CrossRef]
- Cadwell, J. The hollow fiber infection model for antimicrobial pharmacodynamics and pharmacokinetics. J. Drug Metab. Toxicol. 2017, 8. [Google Scholar] [CrossRef]
- Sadouki, Z.; McHugh, T.D.; Aarnoutse, R.; Ortiz Canseco, J.; Darlow, C.; Hope, W.; Van Ingen, J.; Longshaw, C.; Manissero, D.; Mead, A.; et al. Application of the hollow fibre infection model (HFIM) in antimicrobial development: A systematic review and recommendations of reporting. J. Antimicrob. Chemother. 2021, 76, 2252–2259. [Google Scholar] [CrossRef]
- Imtiaz, A.; Othman, M.H.D.; Jilani, A.; Khan, I.U.; Kamaludin, R.; Ayub, M.; Samuel, O.; Kurniawan, T.A.; Hashim, N.A.; Puteh, M.H. A critical review in recent progress of hollow fiber membrane contactors for efficient CO2 separations. Chemosphere 2023, 325, 138300. [Google Scholar] [CrossRef]
- Ramezani, R.; Di Felice, L.; Gallucci, F. A Review on Hollow Fiber Membrane Contactors for Carbon Capture: Recent Advances and Future Challenges. Processes 2022, 10, 2103. [Google Scholar] [CrossRef]
- Enaki, N.; Profir, A.; Ciobanu, N.; Bazgan, S.; Nistreanu, A.; Turcan, M.; Starodub, E.; Paslari, T.; Ristoscu, C.; Badiceanu, M.; et al. Optical metamaterials for decontamination of translucent liquids and gases. J. Phys. D Appl. Phys. 2018, 51, 385101. [Google Scholar] [CrossRef]
- Enaki, N.A.; Bazgan, S.; Ciobanu, N.; Turcan, M.; Paslari, T.; Ristoscu, C.; Vaseashta, A.; Mihailescu, I.N. Improvement in ultraviolet based decontamination rate using meta-materials. Appl. Surf. Sci. 2017, 417, 40–47. [Google Scholar] [CrossRef]
- Enaki, N.; Profir, A.; Bazgan, S.; Paslari, T.; Ristoscu, C.; Mihailescu, C.N.; Bădiceanu, M.; Mihailescu, I.N. Metamaterials for Antimicrobial Biofilm Applications: Photonic Crystals of Microspheres and Optical Fibers for Decontamination of Liquids and Gases. Handb. Antimicrob. Coat. 2018, 257–282. [Google Scholar] [CrossRef]
- Enaki, N.; Bizgan, S.; Nistreanu, A.; Tonu, V.; Turcan, M.; Pislari, T.; Starodub, E.; Profir, A.; Popescu-Pelin, G.-F.; Badiceanu, M.; et al. Efficient Microbial Decontamination of Translucent Liquids and Gases Using Optical Metamaterials; Chowdhury, M.A., Ed.; IntechOpen: Rijeka, Croatia, 2018; Chapter 9; ISBN 978-1-78984-340-8. [Google Scholar]
- Yu, D.; Vollmer, F. Microscale whispering-gallery-mode light sources with lattice-confined atoms. Sci. Rep. 2021, 11, 13899. [Google Scholar] [CrossRef]
- Du, Y.; Zou, C.L.; Zhang, C.; Wang, K.; Qiao, C.; Yao, J.; Zhao, Y.S. Tuneable red, green, and blue single-mode lasing in heterogeneously coupled organic spherical microcavities. Light Sci. Appl. 2020, 9, 151. [Google Scholar] [CrossRef]
- Hales, T.C. An overview of the Kepler conjecture. arXiv 1998, arXiv:math/9811071. [Google Scholar]
- Wu, Y.; Fan, Z.; Lu, Y. Bulk and interior packing densities of random close packing of hard spheres. J. Mater. Sci. 2003, 38, 2019–2025. [Google Scholar] [CrossRef]
- Dai, W.; Reimann, J.; Hanaor, D.; Ferrero, C.; Gan, Y. Modes of wall induced granular crystallisation in vibrational packing. Granul. Matter 2019, 21, 26. [Google Scholar] [CrossRef] [Green Version]
- Prieve, D.C.; Walz, J.Y. Scattering of an evanescent surface wave by a microscopic dielectric sphere. Appl. Opt. 1993, 32, 1629–1641. [Google Scholar] [CrossRef]
- Angelsky, O.V.; Zenkova, C.Y.; Hanson, S.G.; Zheng, J. Extraordinary Manifestation of Evanescent Wave in Biomedical Application. Front. Phys. 2020, 8, 528451. [Google Scholar] [CrossRef]
- Ma, J.; Bock, W.J. Dramatic performance enhancement of evanescent-wave multimode fiber fluorometer using non-Lambertian light diffuser. Opt. Express 2007, 15, 16457. [Google Scholar] [CrossRef] [Green Version]
- Russell, P.S.J.; Beravat, R.; Wong, G.K.L. Helically twisted photonic crystal fibres. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20150440. [Google Scholar] [CrossRef] [Green Version]
- Cregan, R.F.; Mangan, B.J.; Knight, J.C.; Birks, T.A.; Russell, P.S.J.; Roberts, P.J.; Allan, D.C. Single-Mode Photonic Band Gap Guidance of Light in Air. Science 1999, 285, 1537–1539. [Google Scholar] [CrossRef] [Green Version]
- Yong, E. Yeast suggests speedy start for multicellular life. Nature 2012. [Google Scholar] [CrossRef]
- Péter, G.; Rosa, C. (Eds.) Biodiversity and Ecophysiology of Yeasts; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Walker, K.; Skelton, H.; Smith, K. Cutaneous lesions showing giant yeast forms of Blastomyces dermatitidis. J. Cutan. Pathol. 2002, 29, 616–618. [Google Scholar] [CrossRef] [Green Version]
- Legras, J.L.; Merdinoglu, D.; Cornuet, J.M.; Karst, F. Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol. Ecol. 2007, 16, 2091–2102. [Google Scholar] [CrossRef]
- Enaki, N.A.; Turcan, M.; Bazgan, S.; Starodub, E.; Paslari, T.; Nistreanu, A.; Ristoscu, C.; Mihailescu, I.N. Composite metamaterials for biological decontamination of fluids. IFMBE Proc. 2020, 77, 373–377. [Google Scholar] [CrossRef]
- Enaki, N.A.; Paslari, T.; Bazgan, S.; Starodub, E.; Munteanu, I.; Turcan, M.; Eremeev, V.; Profir, A.; Mihailescu, I.N. UVC radiation intensity dependence of pathogen decontamination rate: Semiclassical theory and experiment. Eur. Phys. J. Plus 2022, 137, 1–14. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enaki, N.A.; Munteanu, I.; Paslari, T.; Turcan, M.; Starodub, E.; Bazgan, S.; Podoleanu, D.; Ristoscu, C.; Anghel, S.; Badiceanu, M.; et al. Topological Avenue for Efficient Decontamination of Large Volumes of Fluids via UVC Irradiation of Packed Metamaterials. Materials 2023, 16, 4559. https://doi.org/10.3390/ma16134559
Enaki NA, Munteanu I, Paslari T, Turcan M, Starodub E, Bazgan S, Podoleanu D, Ristoscu C, Anghel S, Badiceanu M, et al. Topological Avenue for Efficient Decontamination of Large Volumes of Fluids via UVC Irradiation of Packed Metamaterials. Materials. 2023; 16(13):4559. https://doi.org/10.3390/ma16134559
Chicago/Turabian StyleEnaki, Nicolae A., Ion Munteanu, Tatiana Paslari, Marina Turcan, Elena Starodub, Sergiu Bazgan, Diana Podoleanu, Carmen Ristoscu, Sinziana Anghel, Maria Badiceanu, and et al. 2023. "Topological Avenue for Efficient Decontamination of Large Volumes of Fluids via UVC Irradiation of Packed Metamaterials" Materials 16, no. 13: 4559. https://doi.org/10.3390/ma16134559
APA StyleEnaki, N. A., Munteanu, I., Paslari, T., Turcan, M., Starodub, E., Bazgan, S., Podoleanu, D., Ristoscu, C., Anghel, S., Badiceanu, M., & Mihailescu, I. N. (2023). Topological Avenue for Efficient Decontamination of Large Volumes of Fluids via UVC Irradiation of Packed Metamaterials. Materials, 16(13), 4559. https://doi.org/10.3390/ma16134559