Producing Metal Powder from Machining Chips Using Ball Milling Process: A Review
Abstract
:1. Introduction
- i.
- ii.
- iii.
- iv.
- v.
2. Ball Milling
2.1. Important Processing Parameters in the Ball Mill Process
2.1.1. Ball-to-Powder Ratio (BPR)
2.1.2. Milling Time
2.1.3. Milling Speed
2.1.4. Type of Milling Container
2.1.5. Milling Atmosphere
2.1.6. Milling Temperature
2.1.7. Ball Size Distribution
2.2. Selecting Ball Mill Media
Alternative Materials for Ball Mill Jar and Balls
- i.
- ii.
- Tungsten Carbide: Tungsten carbide is a hard and dense material that is often used as a substitute for steel balls. It is highly resistant to wear and abrasion, making it ideal for grinding materials that are difficult to grind [181].
- iii.
- iv.
- Alumina: Alumina is a ceramic material that is often used as a substitute for porcelain or glass jars. It is highly resistant to wear and corrosion and is often used for grinding materials that are abrasive or highly acidic [96].
- v.
- Zirconia: Zirconia is a ceramic material that is highly resistant to wear and abrasion. It is often used as a substitute for steel balls in applications where the material being ground is highly abrasive or reactive [96].
2.3. Influence of Ball Mill Parameters on Mechanical Properties
2.3.1. Impact of Different Ball Mill Jars on Mechanical Properties
2.3.2. Effect of Different Ratios of Ball Mill on Mechanical Properties
2.3.3. Effect of Different Process Control Agents (PCA) of Ball Mill Process
2.4. Evaluating the Properties of Metal-Chipped Powder Particles
3. Summary and Future Works
- i.
- Investigate the effects of ball jar and ball mill size and capacity on the quantity of metal powder produced. This will help identify the optimal ball mill size and capacity for processing different types of metal waste.
- ii.
- Study the effects of ball milling settings, such as milling duration, rotation speed, and ball-to-powder ratio, on the quality and quantity of metal powder produced. This will help optimize the ball milling process for each specific metal waste type.
- iii.
- Explore additives during ball milling to improve the quality and quantity of metal powder produced. Additives such as surfactants, dispersants, and lubricants may improve the efficiency of the ball milling process and increase the yield of metal powder.
- iv.
- The performance of recycled copper powder after ball milling in terms of thermal conductivity, compressive strength, density, thermal diffusivity, and surface roughness must be studied before they can be used as mold inserts for RT application.
- v.
- Investigate the environmental impact of ball milling on metal powder production from recycled copper chips (waste). This includes studying the energy consumption, carbon footprint, and waste generated during the ball milling.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walsh, E.; ter Horst, J.H.; Markl, D. Development of 3D printed rapid tooling for micro-injection moulding. Chem. Eng. Sci. 2021, 235, 116498. [Google Scholar] [CrossRef]
- Zink, B.; Kovács, N.K.; Kovács, J.G. Thermal analysis based method development for novel rapid tooling applications. Int. Commun. Heat Mass Transf. 2019, 108, 104297. [Google Scholar] [CrossRef]
- Krizsma, S.; Kovács, N.K.; Kovács, J.G.; Suplicz, A. In-situ monitoring of deformation in rapid prototyped injection molds. Addit. Manuf. 2021, 42, 102001. [Google Scholar] [CrossRef]
- Kampker, A.; Triebs, J.; Kawollek, S.; Ayvaz, P.; Beyer, T. Direct polymer additive tooling—Effect of additive manufactured polymer tools on part material properties for injection moulding. Rapid Prototyp. J. 2019, 25, 1575–1584. [Google Scholar] [CrossRef]
- Mendible, G.A.; Rulander, J.A.; Johnston, S.P. Comparative study of rapid and conventional tooling for plastics injection molding. Rapid Prototyp. J. 2017, 23, 344–352. [Google Scholar] [CrossRef]
- Costabile, G.; Fera, M.; Fruggiero, F.; Lambiase, A.; Pham, D. Cost models of additive manufacturing: A literature review. Int. J. Ind. Eng. Comput. 2016, 8, 263–282. [Google Scholar] [CrossRef]
- Equbal, A.; Kumar, A.; Mohammad, S. Rapid Tooling: A Major Shift In Tooling Practice. Manuf. Ind. Eng. 2015, 14, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Pinto, J.T.M.; Diemer, A. Supply chain integration strategies and circularity in the European steel industry. Resour. Conserv. Recycl. 2020, 153, 104517. [Google Scholar] [CrossRef]
- Dhiman, S.; Joshi, R.S.; Singh, S.; Gill, S.S.; Singh, H.; Kumar, R.; Kumar, V. A framework for effective and clean conversion of machining waste into metal powder feedstock for additive manufacturing. Clean. Eng. Technol. 2021, 4, 100151. [Google Scholar] [CrossRef]
- Lee, C.M.; Choi, Y.H.; Ha, J.H.; Woo, W.S. Eco-friendly technology for recycling of cutting fluids and metal chips: A review. Int. J. Precis. Eng. Manuf.-Green Technol. 2017, 4, 457–468. [Google Scholar] [CrossRef]
- Hemmat Esfe, M.; Bahiraei, M.; Mir, A. Application of conventional and hybrid nanofluids in different machining processes: A critical review. Adv. Colloid Interface Sci. 2020, 282, 102199. [Google Scholar] [CrossRef]
- Bejjani, R.; Balazinski, M.; Attia, H.; Plamondon, P.; L’Éspérance, G. Chip formation and microstructure evolution in the adiabatic shear band when machining titanium metal matrix composites. Int. J. Mach. Tools Manuf. 2016, 109, 137–146. [Google Scholar] [CrossRef]
- Abdollahi, H.; Mahdavinejad, R.; Ghambari, M.; Moradi, M. Investigation of green properties of iron/jet-milled grey cast iron compacts by response surface method. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2014, 228, 493–503. [Google Scholar] [CrossRef]
- Fullenwider, B.; Kiani, P.; Schoenung, J.M.; Ma, K. From recycled machining waste to useful powders for metal additive manufacturing. In REWAS 2019: Manufacturing the Circular Materials Economy; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2019; pp. 3–7. [Google Scholar] [CrossRef]
- Tekkaya, A.E.; Schikorra, M.; Becker, D.; Biermann, D.; Hammer, N.; Pantke, K. Hot profile extrusion of AA-6060 aluminum chips. J. Mater. Process. Technol. 2009, 209, 3343–3350. [Google Scholar] [CrossRef]
- Wu, S.; Ji, Z.; Zhang, T. Microstructure and mechanical properties of AZ31B magnesium alloy recycled by solid-state process from different size chips. J. Mater. Process. Technol. 2009, 209, 5319–5324. [Google Scholar] [CrossRef]
- Qi, Y.; Timokhina, I.B.; Shekhter, A.; Sharp, K.; Lapovok, R. Optimization of upcycling of Ti-6Al-4V swarf. J. Mater. Process. Technol. 2018, 255, 853–864. [Google Scholar] [CrossRef]
- Afshari, E.; Ghambari, M.; Abdolmalek, H. Production of CuSn10 bronze powder from machining chips using jet milling. Int. J. Adv. Manuf. Technol. 2017, 92, 663–672. [Google Scholar] [CrossRef]
- Yılmaz, B.; Karabulut, Ş.; Güllü, A. A review of the chip breaking methods for continuous chips in turning. J. Manuf. Process. 2020, 49, 50–69. [Google Scholar] [CrossRef]
- Chiba, R.; Nakamura, T.; Kuroda, M. Solid-state recycling of aluminium alloy swarf through cold profile extrusion and cold rolling. J. Mater. Process. Technol. 2011, 211, 1878–1887. [Google Scholar] [CrossRef]
- Joshi, R.S.; Singh, H. An investigation on flank wear mechanism of tungsten carbide drills during conventional and modulation assisted drilling. Mach. Sci. Technol. 2014, 18, 99–119. [Google Scholar] [CrossRef]
- Souza, J.; Motta, C.; Machado, T.; Giacomin, A.; Arabi, H. Analysis of Metallic Waste from Laser Cutting for Utilization in Parts Manufactured by Conventional Powder Metallurgy. Int. J. Res. Eng. Sci. 2016, 4, 1–5. [Google Scholar]
- Baffari, D.; Buffa, G.; Ingarao, G.; Masnata, A.; Fratini, L. Aluminium sheet metal scrap recycling through friction consolidation. Procedia Manuf. 2019, 29, 560–566. [Google Scholar] [CrossRef]
- De Martini Fernandes, L.; Lopes, J.C.; Ribeiro, F.S.F.; Gallo, R.; Razuk, H.C.; de Angelo Sanchez, L.E.; de Aguiar, P.R.; de Mello, H.J.; Bianchi, E.C. Thermal model for surface grinding application. Int. J. Adv. Manuf. Technol. 2019, 104, 2783–2793. [Google Scholar] [CrossRef]
- Dewanjee, D.; Kundu, P.; Sikder, B.; Biswas, D.; Mandal, B.; Das, S. Comparison of grinding performance under different eco-friendly environment. In CAD/CAM, Robotics and Factories of the Future, Proceedings of the 28th International Conference on CARs & FoF 2016, Kolkata, India, 6–9 January 2016; Lecture Notes in Mechanical Engineering; Springer: New Delhi, India, 2016; pp. 33–41. [Google Scholar] [CrossRef]
- Johnston, R.B. Arsenic and the 2030 Agenda for sustainable development. In Arsenic Research and Global Sustainability, Proceedings of the 6th International Congress on Arsenic in the Environment, AS 2016, Stockholm, Sweden, 19–23 June 2016; CRC Press/Balkema: Leiden, The Netherlands, 2016. [Google Scholar]
- Xiao, S.; Dong, H.; Geng, Y.; Brander, M. An overview of China’s recyclable waste recycling and recommendations for integrated solutions. Resour. Conserv. Recycl. 2018, 134, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Jassim, A.K. Using Sustainable Manufacturing Process to Produce Solid Shaft from Al–Zn Alloys Chips and Copper Chips without Melting. Procedia CIRP 2016, 40, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Tabelin, C.B.; Park, I.; Phengsaart, T.; Jeon, S.; Villacorte-Tabelin, M.; Alonzo, D.; Yoo, K.; Ito, M.; Hiroyoshi, N. Copper and critical metals production from porphyry ores and E-wastes: A review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resour. Conserv. Recycl. 2021, 170, 105610. [Google Scholar] [CrossRef]
- Elshkaki, A.; Graedel, T.E.; Ciacci, L.; Reck, B. Copper demand, supply, and associated energy use to 2050. Glob. Environ. Chang. 2016, 39, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Broadbent, C. Steel’s recyclability: Demonstrating the benefits of recycling steel to achieve a circular economy. Int. J. Life Cycle Assess. 2016, 21, 1658–1665. [Google Scholar] [CrossRef] [Green Version]
- Wagner, T.P.; Raymond, T. Landfill mining: Case study of a successful metals recovery project. Waste Manag. 2015, 45, 448–457. [Google Scholar] [CrossRef]
- Johansson, N.; Krook, J.; Eklund, M. The institutional capacity for a resource transition—A critical review of Swedish governmental commissions on landfill mining. Environ. Sci. Policy 2017, 70, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Jani, Y.; Kaczala, F.; Marchand, C.; Hogland, M.; Kriipsalu, M.; Hogland, W.; Kihl, A. Characterisation of excavated fine fraction and waste composition from a Swedish landfill. Waste Manag. Res. 2016, 34, 1292–1299. [Google Scholar] [CrossRef]
- Ciacci, L.; Fishman, T.; Elshkaki, A.; Graedel, T.E.; Vassura, I.; Passarini, F. Exploring future copper demand, recycling and associated greenhouse gas emissions in the EU-28. Glob. Environ. Chang. 2020, 63, 102093. [Google Scholar] [CrossRef]
- Haque, N.; Norgate, T. The greenhouse gas footprint of in-situ leaching of uranium, gold and copper in Australia. J. Clean. Prod. 2014, 84, 382–390. [Google Scholar] [CrossRef]
- Benjamin, J.S. Dispersion strengthened superalloys by mechanical alloying. Metall. Trans. 1970, 1, 2943–2951. [Google Scholar] [CrossRef]
- Afkham, Y.; Khosroshahi, R.A.; Kheirifard, R.; Mousavian, R.T.; Brabazon, D. Microstructure and morphological study of ball-milled metal matrix nanocomposites. Phys. Met. Metallogr. 2017, 118, 749–758. [Google Scholar] [CrossRef]
- Afkham, Y.; Khosroshahi, R.A.; Taherzadeh Mousavian, R.; Brabazon, D.; Kheirifard, R. Microstructural characterization of ball-milled metal matrix nanocomposites (Cr, Ni, Ti)-25 wt% (Al2O3np, SiCnp). Part. Sci. Technol. 2018, 36, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Buryakovskaya, O.A.; Suleimanov, M.Z.; Vlaskin, M.S.; Kumar, V.; Ambaryan, G.N. Aluminum Scrap to Hydrogen: Complex Effects of Oxidation Medium, Ball Milling Parameters, and Copper Additive Dispersity. Metals 2023, 13, 185. [Google Scholar] [CrossRef]
- Besekar, A.; Hussain, I.; Jose Immanuel, R. Recycling of titanium as reinforcement in cast aluminium alloy A356 for improving the microstructural refinement and mechanical performance towards a sustainable material development. Mater. Today Proc. 2023, 2214–7853. [Google Scholar] [CrossRef]
- Pulido-Suárez, P.A.; Uñate-González, K.S.; Tirado-González, J.G.; Esguerra-Arce, A.; Esguerra-Arce, J. The evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgy. J. Mater. Res. Technol. 2020, 9, 11769–11777. [Google Scholar] [CrossRef]
- Cullen, J.M.; Allwood, J.M. Mapping the global flow of aluminum: From liquid aluminum to end-use goods. Environ. Sci. Technol. 2013, 47, 3057–3064. [Google Scholar] [CrossRef] [Green Version]
- Al-Kindi, L.; Alghabban, W. Framework for Solid Waste Management in Steel Fabrication. Eng. Technol. J. 2019, 37, 227–236. [Google Scholar] [CrossRef]
- Ghosh, T.; Kim, H.C.; De Kleine, R.; Wallington, T.J.; Bakshi, B.R. Life cycle energy and greenhouse gas emissions implications of using carbon fiber reinforced polymers in automotive components: Front subframe case study. Sustain. Mater. Technol. 2021, 28, e00263. [Google Scholar] [CrossRef]
- Golroudbary, S.R.; Makarava, I.; Repo, E.; Kraslawski, A.; Luukka, P. Magnesium Life Cycle in Automotive Industry. Procedia CIRP 2022, 105, 589–594. [Google Scholar] [CrossRef]
- Prosviryakov, A.; Bazlov, A.; Pozdniakov, A.; Emelina, N. Low-Cost Mechanically Alloyed Copper-Based Composite Reinforced with Silicate Glass Particles for Thermal Applications. JOM 2018, 71, 995–1001. [Google Scholar] [CrossRef]
- Tan, A.; Yin, M.; Zamree, S.; Rahim, A.; Mustafa, M.; Bakri, A.; Nabialek, M.; Abdellah, A.E.; Rennie, A.; Faheem, M.; et al. Potential of New Sustainable Green Geopolymer Metal Composite (GGMC) Material as Mould Insert for Rapid Tooling (RT) in Injection Moulding Process. Materials 2023, 16, 1724. [Google Scholar] [CrossRef]
- Cheng, J.; Cai, Q.; Zhao, B.; Yang, S.; Chen, F.; Li, B. Microstructure and mechanical properties of copper-niobium alloy prepared by mechanical alloying. Materials 2019, 12, 1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azimi, A.; Shokuhfar, A.; Zolriasatein, A. Nanostructured Al-Zn-Mg-Cu-Zr alloy prepared by mechanical alloying followed by hot pressing. Mater. Sci. Eng. A 2014, 595, 124–130. [Google Scholar] [CrossRef]
- Wright, S.; Jahanshahi, S.; Jorgensen, F.; Brennan, D. Is Metal Recycling Sustainable? In Proceedings of the Green Processing 2002—International Conference on the Sustainable Processing of Minerals, Cairns, Australia, 29–31 May 2002; pp. 335–341. [Google Scholar]
- Behnagh, R.A.; Abdollahi, H.; Pour, M.A.M.; Shahbazi, B. Microstructure, mechanical properties, and electrical conductivity of the solid-state recycled pure copper machining chips. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2021, 235, 195–201. [Google Scholar] [CrossRef]
- Suryanarayana, C. Mechanical Alloying: A Novel Technique to Synthesize Advanced Materials. Research 2019, 2019, 4219812. [Google Scholar] [CrossRef] [Green Version]
- Salur, E.; Acarer, M.; Şavkliyildiz, İ. Improving mechanical properties of nano-sized TiC particle reinforced AA7075 Al alloy composites produced by ball milling and hot pressing. Mater. Today Commun. 2021, 27, 102202. [Google Scholar] [CrossRef]
- Salur, E.; Aslan, A.; Kuntoğlu, M.; Acarer, M. Effect of ball milling time on the structural characteristics and mechanical properties of nano-sized Y2O3 particle reinforced aluminum matrix composites produced by powder metallurgy route. Adv. Powder Technol. 2021, 32, 3826–3844. [Google Scholar] [CrossRef]
- Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L.; Cheng, H.M. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly. Adv. Funct. Mater. 2011, 21, 1717–1722. [Google Scholar] [CrossRef]
- Ghasali, E.; Sangpour, P.; Jam, A.; Rajaei, H.; Shirvanimoghaddam, K.; Ebadzadeh, T. Microwave and spark plasma sintering of carbon nanotube and graphene reinforced aluminum matrix composite. Arch. Civ. Mech. Eng. 2018, 18, 1042–1054. [Google Scholar] [CrossRef]
- Zhao, N.; Nash, P.; Yang, X. The effect of mechanical alloying on SiC distribution and the properties of 6061 aluminum composite. J. Mater. Process. Technol. 2005, 170, 586–592. [Google Scholar] [CrossRef]
- Morsi, K.; Esawi, A. Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminum (Al)-CNT composite powders. J. Mater. Sci. 2007, 42, 4954–4959. [Google Scholar] [CrossRef]
- Fan, G.; Jiang, Y.; Tan, Z.; Guo, Q.; Xiong, D.B.; Su, Y.; Lin, R.; Hu, L.; Li, Z.; Zhang, D. Enhanced interfacial bonding and mechanical properties in CNT/Al composites fabricated by flake powder metallurgy. Carbon N. Y. 2018, 130, 333–339. [Google Scholar] [CrossRef]
- Kim, H.H.; Babu, J.S.S.; Kang, C.G. Fabrication of A356 aluminum alloy matrix composite with CNTs/Al2O3 hybrid reinforcements. Mater. Sci. Eng. A 2013, 573, 92–99. [Google Scholar] [CrossRef]
- Canakci, A.; Varol, T. A novel method for the production of metal powders without conventional atomization process. J. Clean. Prod. 2015, 99, 312–319. [Google Scholar] [CrossRef]
- Biyik, S.; Aydin, M. The effect of the amount of process control agent on the properties of Cu25W composite powder. WIT Trans. Built Environ. 2014, 137, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.L. Processing of advanced materials using high-energy mechanical milling. Prog. Mater. Sci. 2004, 49, 537–560. [Google Scholar] [CrossRef]
- Amini, M.; Reza, M.; Ali, S.; Palizdar, Y. Ultrafast synthesis of the nanostructured Al59Cu25.5Fe12.5B3 quasicrystalline and crystalline phases by high-energy ball milling: Microhardness, electrical resistivity, and solar cell absorptance studies. Adv. Powder Technol. 2020, 31, 4319–4335. [Google Scholar] [CrossRef]
- Kamrani, S.; Penther, D.; Ghasemi, A.; Riedel, R.; Fleck, C. Microstructural characterization of Mg-SiC nanocomposite synthesized by high energy ball milling. Adv. Powder Technol. 2018, 29, 1742–1748. [Google Scholar] [CrossRef]
- Binns, C. Introduction to Nanoscience and Nanotechnology, 1st ed.; Wiley: New York, NY, USA, 2010. [Google Scholar]
- Vu, H.L.; Tran, L.Q.; Duong, B.N.; Dang, K.Q. Consolidation and properties of Cu-TiC composite by a reduction sintering and cold extrusion process. In Proceedings of the 15th European Conference on Composite Matererials, Venice, Italy, 24–28 June 2012; pp. 24–28. [Google Scholar]
- Enayati, M.H.; Bafandeh, M.R.; Nosohian, S. Ball milling of stainless steel scrap chips to produce nanocrystalline powder. J. Mater. Sci. 2007, 42, 2844–2848. [Google Scholar] [CrossRef]
- Da Costa, C.E.; Zapata, W.C.; Parucker, M.L. Characterization of casting iron powder from recycled swarf. J. Mater. Process. Technol. 2003, 143–144, 138–143. [Google Scholar] [CrossRef]
- Afshari, E.; Ghambari, M. Characterization of pre-alloyed tin bronze powder prepared by recycling machining chips using jet milling. Mater. Des. 2016, 103, 201–208. [Google Scholar] [CrossRef]
- Štrukil, V. Mechanochemical synthesis of thioureas, ureas and guanidines. Beilstein J. Org. Chem. 2017, 13, 1828–1849. [Google Scholar] [CrossRef] [Green Version]
- Kubota, K.; Ito, H. Mechanochemical Cross-Coupling Reactions. Trends Chem. 2020, 2, 1066–1081. [Google Scholar] [CrossRef]
- Homayouni Rad, A.; Pirouzian, H.R.; Toker, O.S.; Konar, N. Application of simplex lattice mixture design for optimization of sucrose-free milk chocolate produced in a ball mill. LWT-Food Sci. Technol. 2019, 115, 108435. [Google Scholar] [CrossRef]
- Witkin, D.B.; Lavernia, E.J. Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog. Mater. Sci. 2006, 51, 1–60. [Google Scholar] [CrossRef]
- Piras, C.C.; Fernández-Prieto, S.; De Borggraeve, W.M. Ball milling: A green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv. 2019, 1, 937–947. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.X.; Wu, Z.M.; Fu, E.G.; Du, J.L.; Wang, P.P.; Zhao, Y.B.; Qiu, Y.H.; Hu, Z.Y. Refinement process and mechanisms of tungsten powder by high energy ball milling. Int. J. Refract. Met. Hard Mater. 2017, 67, 1–8. [Google Scholar] [CrossRef]
- Carreño-Gallardo, C.; Estrada-Guel, I.; López-Meléndez, C.; Ledezma-Sillas, E.; Castañeda-Balderas, R.; Pérez-Bustamante, R.; Herrera-Ramírez, J.M. B4C particles reinforced Al2024 composites via mechanical milling. Metals 2018, 8, 647. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; He, J.; Sun, Q.; Wang, S. Effect of the environment on the morphology of Ni powder during high-energy ball milling. Mater. Today Commun. 2020, 25, 101288. [Google Scholar] [CrossRef]
- Guaglianoni, W.C.; Takimi, A.; Vicenzi, J.; Bergmann, C.P. Synthesis of wc-12wt%co Nanocomposites by High Energy Ball Milling and their Morphological Characterization. Tecnol. Metal. Mater. Mineração 2015, 12, 211–215. [Google Scholar] [CrossRef]
- Seta, F.T.; An, X.; Liu, L.; Zhang, H.; Yang, J.; Zhang, W.; Nie, S.; Yao, S.; Cao, H.; Xu, Q.; et al. Preparation and characterization of high yield cellulose nanocrystals (CNC) derived from ball mill pretreatment and maleic acid hydrolysis. Carbohydr. Polym. 2020, 234, 115942. [Google Scholar] [CrossRef]
- Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174. [Google Scholar] [CrossRef]
- Ashrafizadeh, H.; Ashrafizaadeh, M. Influence of processing parameters on grinding mechanism in planetary mill by employing discrete element method. Adv. Powder Technol. 2012, 23, 708–716. [Google Scholar] [CrossRef]
- Santhakumaran, V.; Sengottuvelu, R. Modernization of copper chips synthesized by top down approach in addition to W-H plot, EDAX and extensive X-ray diffraction studies. Indian J. Eng. Mater. Sci. 2017, 24, 455–460. [Google Scholar]
- Rofman, O.V.; Prosviryakov, A.S.; Mikhaylovskaya, A.V.; Kotov, A.D.; Bazlov, A.I.; Cheverikin, V.V. Processing and Microstructural Characterization of Metallic Powders Produced from Chips of AA2024 Alloy. JOM 2019, 71, 2986–2995. [Google Scholar] [CrossRef]
- Ziegler, G.R.; Hogg, R. Particle Size Reduction. In Industrial Chocolate Manufacture and Use; Wiley-Blackwell: Hoboken, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Zhang, F.L.; Zhu, M.; Wang, C.Y. Parameters optimization in the planetary ball milling of nanostructured tungsten carbide/cobalt powder. Int. J. Refract. Met. Hard Mater. 2008, 26, 329–333. [Google Scholar] [CrossRef]
- Mandel, K.; Krüger, L.; Schimpf, C. Particle properties of submicron-sized WC–12Co processed by planetary ball milling. Int. J. Refract. Met. Hard Mater. 2014, 42, 200–204. [Google Scholar] [CrossRef]
- Saravanan, S.; Babu, K. Synthesis, Characterization, and ECAP Consolidation of Carbon Nanotube Reinforced AA 4032 Nanocrystalline Composites Produced by High Energy Ball Milling. ASME J. Eng. Mater. Technol. 2015, 137, 021004. [Google Scholar] [CrossRef]
- Zhou, F.; Ouyang, L.; Zeng, M.; Liu, J.; Wang, H.; Shao, H.; Zhu, M. Growth mechanism of black phosphorus synthesized by different ball milling techniques. J. Alloys Compd. 2019, 784, 339–346. [Google Scholar] [CrossRef]
- Bor, A.; Ichinkhorloo, B.; Uyanga, B.; Lee, J.; Choi, H. Cu/CNT nanocomposite fabrication with different raw material properties using a planetary ball milling process. Powder Technol. 2018, 323, 563–573. [Google Scholar] [CrossRef]
- Sherif El-Eskandarany, M.; Al-Hazza, A.; Al-Hajji, L.A.; Ali, N.; Al-Duweesh, A.A.; Banyan, M.; Al-Ajmi, F. Mechanical milling: A superior nanotechnological tool for fabrication of nanocrystalline and nanocomposite materials. Nanomaterials 2021, 11, 2484. [Google Scholar] [CrossRef]
- Baheti, V.; Abbasi, R.; Militky, J. Ball milling of jute fibre wastes to prepare nanocellulose. World J. Eng. 2012, 9, 45–50. [Google Scholar] [CrossRef]
- Kushwah, S.; Mudgal, M.; Chouhan, R.K. The Process, Characterization and Mechanical properties of fly ash-based Solid form geopolymer via mechanical activation. South Afr. J. Chem. Eng. 2021, 38, 104–114. [Google Scholar] [CrossRef]
- Yang, S.; Zhong, F.; Wang, M.; Bai, S.; Wang, Q. Recycling of automotive shredder residue by solid state shear milling technology. J. Ind. Eng. Chem. 2018, 57, 143–153. [Google Scholar] [CrossRef]
- Batista, C.D.; Fernandes, A.A.M.D.N.D.P.; Vieira, M.T.F.; Emadinia, O. From machining chips to raw material for powder metallurgy—A review. Materials 2021, 14, 5432. [Google Scholar] [CrossRef]
- Kim, H.N.; Kim, J.W.; Kim, M.S.; Lee, B.H.; Kim, J.C. Effects of ball size on the grinding behavior of talc using a high-energy ball mill. Minerals 2019, 9, 668. [Google Scholar] [CrossRef] [Green Version]
- Mittal, S.; Pahi, S.; Singh, K.C. Size effect of nano-scale powders on the microstructure and electrical properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics. J. Mater. Sci. Mater. Electron. 2019, 30, 15493–15503. [Google Scholar] [CrossRef]
- Kuntoglu, M. Machining induced tribological investigations in sustainable milling of Hardox 500 steel: A new approach of measurement science. Meas. J. Int. Meas. Confed. 2022, 201, 111715. [Google Scholar] [CrossRef]
- Simon, L.; Moraes, C.A.M.; Modolo, R.C.E.; Vargas, M.; Calheiro, D.; Brehm, F.A. Recycling of contaminated metallic chip based on eco-efficiency and eco-effectiveness approaches. J. Clean. Prod. 2017, 153, 417–424. [Google Scholar] [CrossRef]
- Cooper, D.R.; Song, J.; Gerard, R. Metal recovery during melting of extruded machining chips. J. Clean. Prod. 2018, 200, 282–292. [Google Scholar] [CrossRef]
- Dhiman, S.; Joshi, R.S.; Singh, S.; Gill, S.S.; Singh, H.; Kumar, R.; Kumar, V. Recycling of Ti6Al4V machining swarf into additive manufacturing feedstock powder to realise sustainable recycling goals. J. Clean. Prod. 2022, 348, 131342. [Google Scholar] [CrossRef]
- Sarah Balqis, Y.; Nor Hafiez, M.N.; Hazran, H. Characterisation of recycled aluminium swarf into fine powder for MIM applications via ball milling. J. Mech. Eng. 2019, 8, 164–175. [Google Scholar]
- Pacini, A.; Lupi, F.; Rossi, A.; Seggiani, M.; Lanzetta, M. Direct Recycling of WC-Co Grinding Chip. Materials 2023, 16, 1347. [Google Scholar] [CrossRef]
- Dias, A.N.O.; da Silva, M.R.; Silva, G. Influence of ball milling parameters on microstructure and magnetic properties of aluminum bronze chips reinforced with vanadium carbide. Int. J. Adv. Manuf. Technol. 2021, 115, 2205–2218. [Google Scholar] [CrossRef]
- Ramesh, S.; Vetrivel, S.; Suresh, P.; Kaviarasan, V. Characterization techniques for nano particles: A practical top down approach to synthesize copper nano particles from copper chips and determination of its effect on planes. Mater. Today Proc. 2020, 33, 2626–2630. [Google Scholar] [CrossRef]
- Gorrasi, G.; Sorrentino, A. Mechanical milling as a technology to produce structural and functional bio-nanocomposites. Green Chem. 2015, 17, 2610–2625. [Google Scholar] [CrossRef]
- De Lima Barizão, A.C.; de Oliveira, J.P.; Gonçalves, R.F.; Cassini, S.T. Nanomagnetic approach applied to microalgae biomass harvesting: Advances, gaps, and perspectives. Environ. Sci. Pollut. Res. 2021, 28, 44795–44811. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Liang, Y.; Fu, E.; Du, J.; Wang, P.; Fan, Y.; Zhao, Y. Effect of ball milling parameters on the refinement of tungsten powder. Metals 2018, 8, 281. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Xiong, X.; Wan, Z.; Sun, Y.; Tsang, D.C.W.; Gupta, J.; Gao, B.; Cao, X.; Tang, J.; Ok, Y.S. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresour. Technol. 2020, 312, 123613. [Google Scholar] [CrossRef] [PubMed]
- Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 2001, 46, 1–184. [Google Scholar] [CrossRef]
- Liao, W.; Jiang, W.; Yang, X.S.; Wang, H.; Ouyang, L.; Zhu, M. Enhancing (de)hydrogenation kinetics properties of the Mg/MgH2 system by adding ANi5 (A = Ce, Nd, Pr, Sm, and Y) alloys via ball milling. J. Rare Earths 2021, 39, 1010–1016. [Google Scholar] [CrossRef]
- Kuziora, P.; Wyszyńska, M.; Polanski, M.; Bystrzycki, J. Why the ball to powder ratio (BPR) is insufficient for describing the mechanical ball milling process. Int. J. Hydrogen Energy 2014, 39, 9883–9887. [Google Scholar] [CrossRef]
- Dehghan Manshady, A.; Rakhshandehroo, G.; Talebbeydokhti, N. Mechanosynthesizing a dual cation orthophosphate using planetary ball mill; Potassium struvite production employing different primary components. Adv. Powder Technol. 2022, 33, 103751. [Google Scholar] [CrossRef]
- Abu-Oqail, A.; Wagih, A.; Fathy, A.; Elkady, O.; Kabeel, A.M. Effect of high energy ball milling on strengthening of Cu-ZrO2 nanocomposites. Ceram. Int. 2018, 45, 5866–5875. [Google Scholar] [CrossRef]
- Yadav, T.P.; Srivastava, R.; Awasthi, K. E-Waste Management through Mechanical Milling: A Sustainable Approach. In Strategies to Achieve Sustainable Development Goals (SDGs); Srivastava, R., Ed.; Nova Science Publishers: New York, NY, USA, 2022; pp. 1–26. [Google Scholar]
- Wu, Z.M.; Liang, Y.X.; Fan, Y.; Wang, P.P.; Du, J.L.; Zhao, Y.B.; Fu, E.G. The ball to powder ratio (BPR) dependent morphology and microstructure of tungsten powder refined by ball milling. Powder Technol. 2018, 339, 256–263. [Google Scholar] [CrossRef]
- Samrot, A.V.; Sahithya, C.S.; Selvarani, A.J.; Purayil, S.K.; Ponnaiah, P. A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles. Curr. Res. Green Sustain. Chem. 2021, 4, 100042. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S.; Shaban, E.; Aldakheel, F.; Alkandary, A.; Behbehani, M.; Al-Saidi, M. Synthetic nanocomposite MgH2/5 wt.% TiMn2 powders for solid-hydrogen storage tank integrated with PEM fuel cell. Sci. Rep. 2017, 7, 13296. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.Y.; Xu, S.J.; Xiao, B.L.; Xue, P.; Wang, W.G.; Ma, Z.Y. Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites. Compos. Part A Appl. Sci. Manuf. 2012, 43, 2161–2168. [Google Scholar] [CrossRef]
- Ponhan, K.; Tassenberg, K.; Weston, D.; Nicholls, K.G.M.; Thornton, R. Effect of SiC nanoparticle content and milling time on the microstructural characteristics and properties of Mg-SiC nanocomposites synthesized with powder metallurgy incorporating high-energy ball milling. Ceram. Int. 2020, 46, 26956–26969. [Google Scholar] [CrossRef]
- Kishore Babu, N.; Kallip, K.; Leparoux, M.; AlOgab, K.A.; Talari, M.K.; Alqahtani, N.M. High strength Ti-6Al-4V alloy fabricated by high-energy cube milling using calcium as process control agent (PCA) and spark plasma sintering. Int. J. Adv. Manuf. Technol. 2017, 93, 445–453. [Google Scholar] [CrossRef]
- Amirkhanlou, S.; Ketabchi, M.; Parvin, N. Nanocrystalline/nanoparticle ZnO synthesized by high energy ball milling process. Mater. Lett. 2012, 86, 122–124. [Google Scholar] [CrossRef]
- Bastwros, M.; Kim, G.Y.; Zhu, C.; Zhang, K.; Wang, S.; Tang, X.; Wang, X. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos. Part B Eng. 2014, 60, 111–118. [Google Scholar] [CrossRef]
- Doğan, K.; Özgün, M.İ.; Sübütay, H.; Salur, E.; Eker, Y.; Kuntoğlu, M.; Aslan, A.; Gupta, M.K.; Acarer, M. Dispersion mechanism-induced variations in microstructural and mechanical behavior of CNT-reinforced aluminum nanocomposites. Arch. Civ. Mech. Eng. 2022, 22, 55. [Google Scholar] [CrossRef]
- Xu, R.; Tan, Z.; Xiong, D.; Fan, G.; Guo, Q.; Zhang, J.; Su, Y.; Li, Z.; Zhang, D. Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling. Compos. Part A Appl. Sci. Manuf. 2017, 96, 57–66. [Google Scholar] [CrossRef]
- Lv, H.; Zhao, X.; Niu, H.; He, S.; Tang, Z.; Wu, F.; Giesy, J.P. Ball milling synthesis of covalent organic framework as a highly active photocatalyst for degradation of organic contaminants. J. Hazard. Mater. 2019, 369, 494–502. [Google Scholar] [CrossRef]
- Xing, T.; Sunarso, J.; Yang, W.; Yin, Y.; Glushenkov, A.M.; Li, L.H.; Howlett, P.C.; Chen, Y. Ball milling: A green mechanochemical approach for synthesis of nitrogen doped carbon nanoparticles. Nanoscale 2013, 5, 7970–7976. [Google Scholar] [CrossRef] [Green Version]
- Hussain, I.; Lee, J.E.; Jeon, S.E.; Cho, H.J.; Huh, S.H.; Koo, B.H.; Lee, C.G. Effect of milling speed on the structural and magnetic properties of Ni70Mn30 alloy prepared by Planetary Ball Mill method. Korean J. Mater. Res. 2018, 28, 539–543. [Google Scholar] [CrossRef]
- Musza, K.; Szabados, M.; Ádám, A.A.; Kónya, Z.; Kukovecz, Á.; Sipos, P.; Pálinkó, I. Ball Milling of Copper Powder Under Dry and Surfactant-Assisted Conditions—On the Way Towards Cu/Cu2O Nanocatalyst. J. Nanosci. Nanotechnol. 2019, 19, 389–394. [Google Scholar] [CrossRef] [PubMed]
- MASROOR, M.; SHEIBANI, S.; ATAIE, A. Effect of milling energy on preparation of Cu–Cr/CNT hybrid nano-composite by mechanical alloying. Trans. Nonferrous Met. Soc. China Engl. Ed. 2016, 26, 1359–1366. [Google Scholar] [CrossRef]
- Hadef, F. Synthesis and disordering of B2 TM-Al (TM = Fe, Ni, Co) intermetallic alloys by high energy ball milling: A review. Powder Technol. 2017, 311, 556–578. [Google Scholar] [CrossRef]
- Liu, X.; Wen, H.; Guo, B.; Lv, C.; Shi, W.; Kang, W.; Zhang, J.; Yuan, R.; Zhang, C. Pan-Milling: Instituting an All-Solid-State Technique for Mechanical Metastable Oxides as High-Performance Lithium-Ion Battery Anodes. Adv. Energy Mater. 2021, 11, 2100310. [Google Scholar] [CrossRef]
- Chen, Y.; Halstead, T.; Williams, J.S. Influence of milling temperature and atmosphere on the synthesis of iron nitrides by ball milling. Mater. Sci. Eng. A 1996, 206, 24–29. [Google Scholar] [CrossRef]
- Prasad Yadav, T.; Manohar Yadav, R.; Pratap Singh, D. Mechanical Milling: A Top Down Approach for the Synthesis of Nanomaterials and Nanocomposites. Nanosci. Nanotechnol. 2012, 2, 22–48. [Google Scholar] [CrossRef] [Green Version]
- Sherif El-Eskandarany, M. Structure and properties of nanocrystalline TiC full-density bulk alloy consolidated from mechanically reacted powders. J. Alloys Compd. 2000, 305, 225–238. [Google Scholar] [CrossRef]
- Blachnik, R.; Muller, A. The formation of Cu2S from the elements I. Copper used in form of powders. Thermochim. Acta 2000, 361, 31–52. [Google Scholar] [CrossRef]
- Umeda, J.; Mimoto, T.; Imai, H.; Kondoh, K. Powder forming process from machined titanium chips via heat treatment in hydrogen atmosphere. Mater. Trans. 2017, 58, 1702–1707. [Google Scholar] [CrossRef] [Green Version]
- Moravcik, I.; Cizek, J.; Gouvea, L.d.A.; Cupera, J.; Guban, I.; Dlouhy, I. Nitrogen interstitial alloying of CoCrFeMnNi high entropy alloy through reactive powder milling. Entropy 2019, 21, 363. [Google Scholar] [CrossRef] [Green Version]
- El-Eskandarany, M.S.; Sumiyama, K.; Aoki, K.; Suzuki, K. Reactive Ball Mill for Solid State Synthesis of Metal Nitrides Powders. Mater. Sci. Forum 1992, 88–90, 801–808. [Google Scholar] [CrossRef]
- Kurmanaeva, L.; Topping, T.D.; Wen, H.; Sugahara, H.; Yang, H.; Zhang, D.; Schoenung, J.M.; Lavernia, E.J. Strengthening mechanisms and deformation behavior of cryomilled Al-Cu-Mg-Ag alloy. J. Alloys Compd. 2015, 632, 591–603. [Google Scholar] [CrossRef]
- Yang, N.; Yee, J.K.; Zhang, Z.; Kurmanaeva, L.; Cappillino, P.; Stavila, V.; Lavernia, E.J.; San Marchi, C. Hydrogen sorption characteristics of nanostructured Pd-10Rh processed by cryomilling. Acta Mater. 2015, 82, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Shah, U.V.; Wang, Z.; Olusanmi, D.; Narang, A.S.; Hussain, M.A.; Tobyn, M.J.; Heng, J.Y.Y. Effect of milling temperatures on surface area, surface energy and cohesion of pharmaceutical powders. Int. J. Pharm. 2015, 495, 234–240. [Google Scholar] [CrossRef]
- Kulla, H.; Wilke, M.; Fischer, F.; Röllig, M.; Maierhofer, C.; Emmerling, F. Warming up for mechanosynthesis—Temperature development in ball mills during synthesis. Chem. Commun. 2017, 53, 1664–1667. [Google Scholar] [CrossRef]
- Chen, X.; Teng, J.; Xu, Z.; Li, Y. Effect of ball-to-powder weight ratio on microstructure evolution of nanocrystalline mg-Zn powders prepared by mechanical milling. Indian J. Eng. Mater. Sci. 2019, 26, 126–134. [Google Scholar]
- Schmidt, R.; Martin Scholze, H.; Stolle, A. Temperature progression in a mixer ball mill. Int. J. Ind. Chem. 2016, 7, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Takacs, L.; McHenry, J.S. Temperature of the milling balls in shaker and planetary mills. J. Mater. Sci. 2006, 41, 5246–5249. [Google Scholar] [CrossRef]
- Fullenwider, B.; Kiani, P.; Schoenung, J.M.; Ma, K. Two-stage ball milling of recycled machining chips to create an alternative feedstock powder for metal additive manufacturing. Powder Technol. 2019, 342, 562–571. [Google Scholar] [CrossRef]
- Cabeza, M.; Feijoo, I.; Merino, P.; Pena, G.; Pérez, M.C.; Cruz, S.; Rey, P. Effect of high energy ball milling on the morphology, microstructure and properties of nano-sized TiC particle-reinforced 6005A aluminium alloy matrix composite. Powder Technol. 2017, 321, 31–43. [Google Scholar] [CrossRef]
- Shin, H.; Lee, S.; Suk Jung, H.; Kim, J.B. Effect of ball size and powder loading on the milling efficiency of a laboratory-scale wet ball mill. Ceram. Int. 2013, 39, 8963–8968. [Google Scholar] [CrossRef]
- Tavares, L.M. A review of advanced ball mill modelling. KONA Powder Part. J. 2017, 34, 106–124. [Google Scholar] [CrossRef] [Green Version]
- De Camargo, I.L.; Lovo, J.F.P.; Erbereli, R.; Fortulan, C.A. Influence of media geometry on wet grinding of a planetary ball mill. Mater. Res. 2019, 22, e20190432. [Google Scholar] [CrossRef] [Green Version]
- Gandon-Ros, G.; Aracil, I.; Gómez-Rico, M.F.; Conesa, J.A. Mechanochemical debromination of waste printed circuit boards with marble sludge in a planetary ball milling process. J. Environ. Manag. 2022, 317, 115431. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Cao, Q.P.; Wang, X.D.; Zhang, D.X.; Jiang, J.Z. Tuning microstructure and enhancing mechanical properties of Co-Ni-V-Al medium entropy alloy thin films via deposition power. J. Alloys Compd. 2021, 875, 160003. [Google Scholar] [CrossRef]
- Liu, X.; Shao, Y.; Zhang, Y.; Meng, G.; Zhang, T.; Wang, F. Using high-temperature mechanochemistry treatment to modify iron oxide and improve the corrosion performance of epoxy coating—I. High-temperature ball milling treatment. Corros. Sci. 2015, 90, 451–462. [Google Scholar] [CrossRef]
- Wagih, A.; Fathy, A.; Kabeel, A.M. Optimum milling parameters for production of highly uniform metal-matrix nanocomposites with improved mechanical properties. Adv. Powder Technol. 2018, 29, 2527–2537. [Google Scholar] [CrossRef]
- Broseghini, M.; D’Incau, M.; Gelisio, L.; Pugno, N.M.; Scardi, P. Numerical and experimental investigations on new jar designs for high efficiency planetary ball milling. Adv. Powder Technol. 2020, 31, 2641–2649. [Google Scholar] [CrossRef]
- Fahmi, A.K.; Rudianto, H.; Wismogroho, A.S.; Widayatno, W.B.; Aryanto, D.; Hermanto, B. Effects of milling time on sintering properties and formation of interface Al4C3 on graphite reinforced Al-4.5Cu-1.5Mg nanocomposite. J. Met. Mater. Miner. 2022, 32, 65–71. [Google Scholar] [CrossRef]
- Rios, J.; Restrepo, A.; Zuleta, A.; Bolívar, F.; Castaño, J.; Correa, E.; Echeverria, F. Effect of ball size on the microstructure and morphology of mg powders processed by high-energy ball milling. Metals 2021, 11, 1621. [Google Scholar] [CrossRef]
- Gaur, A.; Chauhan, V.S.; Vaish, R. Planetary ball milling induced piezocatalysis for dye degradation using BaTiO3 ceramics. Environ. Sci. Adv. 2023, 2, 462–472. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S. Controlling the powder milling process. In Mechanical Alloying; Elsevier: Amsterdam, The Netherlands, 2015; pp. 48–83. [Google Scholar]
- Hussain, Z. Comparative Study on Improving the Ball Mill Process Parameters Influencing on the Synthesis of Ultrafine Silica Sand: A Taguchi Coupled Optimization Technique. Int. J. Precis. Eng. Manuf. 2021, 22, 679–688. [Google Scholar] [CrossRef]
- Nilssen, B.E.; Kleiv, R.A. Silicon Powder Properties Produced in a Planetary Ball Mill as a Function of Grinding Time, Grinding Bead Size and Rotational Speed. Silicon 2020, 12, 2413–2423. [Google Scholar] [CrossRef]
- Lyu, H.; Gao, B.; He, F.; Ding, C.; Tang, J.; Crittenden, J.C. Ball-Milled Carbon Nanomaterials for Energy and Environmental Applications. ACS Sustain. Chem. Eng. 2017, 5, 9568–9585. [Google Scholar] [CrossRef]
- Soni, P.K.; Bhatnagar, A.; Shukla, V.; Shaz, M.A. Improved de/re-hydrogenation properties of MgH2 catalyzed by graphene templated Ti–Ni–Fe nanoparticles. Int. J. Hydrogen Energy 2022, 47, 21391–21402. [Google Scholar] [CrossRef]
- Qadry, A.N.; Kharisma, N.A. Subaer The properties of geopolymer-cuo nanoparticles as a functional composite. Mater. Sci. Forum 2019, 967, 281–285. [Google Scholar] [CrossRef]
- Verma, P.; Saha, R.; Chaira, D. Waste steel scrap to nanostructured powder and superior compact through powder metallurgy: Powder generation, processing and characterization. Powder Technol. 2018, 326, 159–167. [Google Scholar] [CrossRef]
- Mendonça, C.; Capellato, P.; Bayraktar, E.; Gatamorta, F.; Gomes, J.; Oliveira, A.; Sachs, D.; Melo, M.; Silva, G. Recycling chips of stainless steel using a full factorial design. Metals 2019, 9, 842. [Google Scholar] [CrossRef] [Green Version]
- Claudney, M.; Adhimar, O.; Daniela, S.; Patricia, C.; Vander, R.; Mateus, J.; Mirian, M.; Gilbert, S. A new method to recycle stainless–steel duplex UNS S31803 chips. Metals 2018, 8, 546. [Google Scholar] [CrossRef] [Green Version]
- Yazdani, A.; Hadianfard, M.J.; Salahinejad, E. A system dynamics model to estimate energy, temperature, and particle size in planetary ball milling. J. Alloys Compd. 2013, 555, 108–111. [Google Scholar] [CrossRef]
- Xu, W.; Lo, Y.T.; Ouyang, D.; Memon, S.A.; Xing, F.; Wang, W.; Yuan, X. Effect of rice husk ash fineness on porosity and hydration reaction of blended cement paste. Constr. Build. Mater. 2015, 89, 90–101. [Google Scholar] [CrossRef]
- Acisli, O.; Khataee, A.; Darvishi Cheshmeh Soltani, R.; Karaca, S. Ultrasound-assisted Fenton process using siderite nanoparticles prepared via planetary ball milling for removal of reactive yellow 81 in aqueous phase. Ultrason. Sonochem. 2017, 35, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Marjanović, N.; Komljenović, M.; Baščarević, Z.; Nikolić, V. Improving reactivity of fly ash and properties of ensuing geopolymers through mechanical activation. Constr. Build. Mater. 2014, 57, 151–162. [Google Scholar] [CrossRef]
- Dome, K.; Podgorbunskikh, E.; Bychkov, A.; Lomovsky, O. Changes in the crystallinity degree of starch having different types of crystal structure after mechanical pretreatment. Polymers 2020, 12, 641. [Google Scholar] [CrossRef] [Green Version]
- Hannachi, E.; Sayyed, M.I.; Mahmoud, K.A.; Slimani, Y. Correlation between the structure, grain size distribution and radiation shielding peculiarities of YBCO ceramics prepared by two different milling methods. Appl. Phys. A 2022, 128, 787. [Google Scholar] [CrossRef]
- Ali, Y.; Garcia-Mendoza, C.D.; Gates, J.D. Effects of ‘impact’ and abrasive particle size on the performance of white cast irons relative to low-alloy steels in laboratory ball mills. Wear 2019, 426–427, 83–100. [Google Scholar] [CrossRef]
- Zhuang, S.; Lee, E.S.; Lei, L.; Nunna, B.B.; Kuang, L.; Zhang, W. Synthesis of nitrogen-doped graphene catalyst by high-energy wet ball milling for electrochemical systems. Int. J. Energy Res. 2016, 40, 2136–2149. [Google Scholar] [CrossRef]
- Mutafela, R.N.; Ye, F.; Jani, Y.; Dutta, J.; Hogland, W. Efficient and low-energy mechanochemical extraction of lead from dumped crystal glass waste. Environ. Chem. Lett. 2021, 19, 1879–1885. [Google Scholar] [CrossRef]
- Fathy, A.; Wagih, A.; Abu-Oqail, A. Effect of ZrO2 content on properties of Cu-ZrO2 nanocomposites synthesized by optimized high energy ball milling. Ceram. Int. 2019, 45, 2319–2329. [Google Scholar] [CrossRef]
- Li, G.; Ye, J.; Fang, Q.; Liu, F. Amide-based covalent organic frameworks materials for efficient and recyclable removal of heavy metal lead (II). Chem. Eng. J. 2019, 370, 822–830. [Google Scholar] [CrossRef]
- Vasamsetti, S.; Dumpala, L.; Subbarao, V.V. Optimization of milling parameters of planetary ball mill for synthesizing nano particles. Int. J. Mech. Eng. Technol. 2018, 9, 1579–1589. [Google Scholar]
- Kurlov, A.S.; Gusev, A.I. Effect of ball milling parameters on the particle size in nanocrystalline powders. Tech. Phys. Lett. 2007, 33, 828–832. [Google Scholar] [CrossRef]
- Petrovic, S.; Rožić, L.; Jović, V.; Stojadinović, S.; Grbić, B.; Radić, N.; Lamovec, J.; Vasilić, R. Optimization of a nanoparticle ball milling process parameters using the response surface method. Adv. Powder Technol. 2018, 29, 2129–2139. [Google Scholar] [CrossRef]
- Blanc, N.; Mayer-Laigle, C.; Frank, X.; Radjai, F.; Delenne, J.Y. Evolution of grinding energy and particle size during dry ball-milling of silica sand. Powder Technol. 2020, 376, 661–667. [Google Scholar] [CrossRef]
- Koli, D.K.; Agnihotri, G.; Purohit, R. A Review on Properties, Behaviour and Processing Methods for Al- Nano Al2O3 Composites. Procedia Mater. Sci. 2014, 6, 567–589. [Google Scholar] [CrossRef] [Green Version]
- Abdoli, H.; Asgharzadeh, H.; Salahi, E. Sintering behavior of Al-AlN-nanostructured composite powder synthesized by high-energy ball milling. J. Alloys Compd. 2009, 473, 116–122. [Google Scholar] [CrossRef]
- Jia, C.; Zhu, J.; Zhang, L. An Anti-Corrosion Superhydrophobic Copper Surface Fabricated by Milling and Chemical Deposition. Coatings 2022, 12, 442. [Google Scholar] [CrossRef]
- Rosen, Y.; Marrach, R.; Gutkin, V.; Magdassi, S. Thin Copper Flakes for Conductive Inks Prepared by Decomposition of Copper Formate and Ultrafine Wet Milling. Adv. Mater. Technol. 2019, 4, 1800426. [Google Scholar] [CrossRef]
- Khorasani, S.; Abdizadeh, H.; Heshmati-Manesh, S. Evaluation of structure and morphology of aluminum powder particles milled at different conditions. Adv. Powder Technol. 2014, 25, 599–603. [Google Scholar] [CrossRef]
- Chicinaş, H.F.; Jucan, D.O.; Marinca, T.F.; Neamțu, B.V.; Conțiu, G.; Götze, P.; Eckert, A.; Popa, C.O. Influence of milling media on the structure and agglomeration behaviour of some hardmetal powder. Powder Metall. 2018, 61, 342–347. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Zhang, F.S.; Yao, T.Q. An environmentally friendly ball milling process for recovery of valuable metals from e-waste scraps. Waste Manag. 2017, 68, 490–497. [Google Scholar] [CrossRef]
- Bhouri, M.; Mzali, F. The effect of milling and hot compaction processes on the microstructural and physical properties of recycled 2017 aluminium alloy powders. Mater. Res. Express 2019, 6, 1065f1. [Google Scholar] [CrossRef]
- Dixit, M.; Srivastava, P.R.K. Effect of compaction pressure on microstructure, density and hardness of Copper prepared by Powder Metallurgy route. IOP Conf. Ser. Mater. Sci. Eng. 2018, 377, 012209. [Google Scholar] [CrossRef]
- Mahdavi, A.R.; Sobati, M.A.; Movahedirad, S. Extractive desulfurization of model diesel fuel in a micro-channel contactor using deep eutectic solvents (DESs). Fuel 2022, 327, 125111. [Google Scholar] [CrossRef]
- Ruiz-Navas, E.M.; Fogagnolo, J.B.; Velasco, F.; Ruiz-Prieto, J.M.; Froyen, L. One step production of aluminium matrix composite powders by mechanical alloying. Compos. Part A Appl. Sci. Manuf. 2006, 37, 2114–2120. [Google Scholar] [CrossRef]
- Flores-Campos, R.; Mendoza-Ruiz, D.C.; Amézaga-Madrid, P.; Estrada-Guel, I.; Miki-Yoshida, M.; Herrera-Ramírez, J.M.; Martínez-Sánchez, R. Microstructural and mechanical characterization in 7075 aluminum alloy reinforced by silver nanoparticles dispersion. J. Alloys Compd. 2010, 495, 394–398. [Google Scholar] [CrossRef]
- Razavi-Tousi, S.S.; Szpunar, J.A. Effect of structural evolution of aluminum powder during ball milling on hydrogen generation in aluminum-water reaction. Int. J. Hydrogen Energy 2013, 38, 795–806. [Google Scholar] [CrossRef]
- Abdoli, H.; Ghanbari, M.; Baghshahi, S. Thermal stability of nanostructured aluminum powder synthesized by high-energy milling. Mater. Sci. Eng. A 2011, 528, 6702–6707. [Google Scholar] [CrossRef]
- Bor, A.; Jargalsaikhan, B.; Lee, J.; Choi, H. Effect of different milling media for surface coating on the copper powder using two kinds of ball mills with discrete element method simulation. Coatings 2020, 10, 898. [Google Scholar] [CrossRef]
- Hegedűs, Z.; Meka, S.R.; Mittemeijer, E.J. In situ consolidation of ball milled metals. J. Alloys Compd. 2017, 695, 721–725. [Google Scholar] [CrossRef]
- Suśniak, M.; Karwan-Baczewska, J.; Dutkiewicz, J.; Actis Grande, M.; Rosso, M. Structure investigation of ball milled composite powder based on AlSi5Cu2 alloy chips modified by SiC particles. Arch. Metall. Mater. 2013, 58, 437–441. [Google Scholar] [CrossRef]
- Godinho, S.C.; Farinha, A.R.; Trindade, B.; Vieira, M.T. Powder Manufacturing and Processing: From Chips to Powder Using Ball Milling. In Proceedings of the European Congress and Exhibition on Powder Metallurgy, European PM, Salzburg, Austria, 21–24 September 2014; pp. 1–6. [Google Scholar]
- Samuel, M. A new technique for recycling aluminium scrap. J. Mater. Process. Technol. 2003, 135, 117–124. [Google Scholar] [CrossRef]
- Godinho, S.C.; Santos, R.F.; Vieira, M.T. In the search of nanocrystallinity in tool-steel chips. Cienc. Tecnol. Mater. 2017, 29, e62–e64. [Google Scholar] [CrossRef]
- Cherkasova, M.; Samukov, A.; Goncharov, I.; Mezenin, A. Influence of the metal chips disintegration method on the physical and mechanical properties of metal powders obtained. Vibroeng. Procedia 2020, 32, 32–37. [Google Scholar] [CrossRef]
- Elmahaishi, M.F.; Azis, R.A.S.; Ismail, I.; Mustaffa, M.S.; Abbas, Z.; Matori, K.A.; Muhammad, F.D.; Saat, N.K.; Nazlan, R.; Ibrahim, I.R.; et al. Structural, electromagnetic and microwave properties of magnetite extracted from mill scale waste via conventional ball milling and mechanical alloying techniques. Materials 2021, 14, 22. [Google Scholar] [CrossRef]
- Liao, X.; Xie, H.; Liao, B.; Hou, S.; Yu, Y.; Fan, X. Ball milling induced strong polarization electric fields in Cu3B2O6 crystals for high efficiency piezocatalysis. Nano Energy 2022, 94, 106890. [Google Scholar] [CrossRef]
- Cai, Z.; Haque, A.N.M.A.; Dhandapani, R.; Naebe, M. Impact of variability of cotton gin trash on the properties of powders prepared from distinct mechanical approaches. Powder Technol. 2023, 413, 118045. [Google Scholar] [CrossRef]
- Hanawa, T. A comprehensive review of techniques for biofunctionalization of titanium. J. Periodontal Implant Sci. 2011, 41, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Hou, D.; Jin, F.; Shi, J.; Fan, X.; Tsang, D.C.W.; Alessi, D.S. Effect of production temperature on lead removal mechanisms by rice straw biochars. Sci. Total Environ. 2019, 655, 751–758. [Google Scholar] [CrossRef]
- Hu, Z.; Dai, R.; Wang, D.; Wang, X.; Chen, F.; Fan, X.; Chen, C.; Liao, Y.; Nian, Q. Preparation of graphene/copper nanocomposites by ball milling followed by pressureless vacuum sintering. New Carbon Mater. 2021, 36, 420–428. [Google Scholar] [CrossRef]
- Nazri, N.A.A.; Azis, R.S.; Man, H.C.; Ismail, I.; Ibrahim, I.R. Extraction of magnetite from millscales waste for ultrafast removal of cadmium ions. Int. J. Eng. Adv. Technol. 2019, 9, 5902–5907. [Google Scholar] [CrossRef]
- Maity, G.; Maji, P.; Sain, S.; Das, S.; Kar, T.; Pradhan, S.K. Microstructure, optical and electrical characterizations of nanocrystalline ZnAl2O4 spinel synthesized by mechanical alloying: Effect of sintering on microstructure and properties. Phys. E Low-Dimens. Syst. Nanostructures 2019, 108, 411–420. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, H.; Li, Z.; Wang, H.; Chang, F.; Wang, W.; Tang, Q.; Dai, P. Microstructure and mechanical properties of FeCoCrNiMnTi0.1C0.1 high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Vacuum 2019, 165, 297–304. [Google Scholar] [CrossRef]
- Huang, J.Y.; Wu, Y.K.; Ye, H.Q. Ball milling of ductile metals. Mater. Sci. Eng. A 1995, 199, 165–172. [Google Scholar] [CrossRef]
- Yadav, T.P.; Mukhopadhyay, N.K.; Tiwari, R.S.; Srivastava, O.N. Studies on the formation and stability of nano-crystalline Al50Cu28Fe22 alloy synthesized through high-energy ball milling. Mater. Sci. Eng. A 2005, 393, 366–373. [Google Scholar] [CrossRef]
- Sapkota, R. Nanostructured Thin Films Prepared by Planetary Ball Milling: Fabrication, Characterization and Applications. Ph.D. Thesis, University of Victoria, Victoria, BC, Canada, 2022. [Google Scholar]
- Chen, B.; Li, Z.; Shen, J.; Li, S.; Jia, L.; Umeda, J.; Kondoh, K.; Li, J.S. Mechanical properties and strain hardening behavior of aluminum matrix composites reinforced with few-walled carbon nanotubes. J. Alloys Compd. 2020, 826, 154075. [Google Scholar] [CrossRef]
Materials | Density (g/cm3) | Vickers Hardness (GPa) | Appropriate for Usage with | Abrasion Resistance |
---|---|---|---|---|
Agate, SiO2 | 2.65 | 12.6 | Soft to medium hard samples | Good |
Corundum, Al2O3 | 3.8 | 20 | Medium-hard, fibrous samples | Fairly good |
Silicon nitride, Si3N4 | 3.25 | 17.5 | Abrasive samples | Excellent |
Zirconium oxide, ZrO2 | 5.9 | 12.5 | Abrasive, fibrous samples | Very good |
Stainless steel (Fe, Cr, Ni) | 7.8 | 2.4 | Medium-hard, brittle samples | Fairly good |
Tempered steel (Fe, Cr) | 7.9 | 3.29–3.99 | Hard, brittle samples | Good |
Tungsten carbide Composites (WC/Co) | 14.9 | 15 | Hard, abrasive samples | Very good |
No. | Researchers | Material | Ball Mill Jar | Input Parameters | Mechanical Properties | Findings |
---|---|---|---|---|---|---|
1 | Enayati et al. (2007) [69] |
|
|
|
|
|
2 | Liang et al. (2017) [77] |
|
|
|
|
|
3 | Gallardo et al. (2018) [78] |
|
|
|
|
|
4. | Sarah et al. (2019) [103] |
|
|
|
|
|
5. | Li (2020) [79] |
|
|
|
|
|
No. | Researchers | Material | Ball Mill Jar | Input Parameters | Ratio of Ball Mill Jar | Findings |
---|---|---|---|---|---|---|
1. | Biyik and Aydin (2014) [63] |
|
|
|
|
|
2. | Guaglianoni et al. (2015) [80] |
|
|
|
|
|
3. | Petrovic et al. (2018) [183] |
|
|
| 1:10 |
|
4. | Vasamsetti et al. (2018) [181] |
|
|
|
|
|
5. | Mendonca et al. (2019) [168] |
|
|
|
|
|
Variable and Designate | Code Level Ranges and Actual Values | ||||
---|---|---|---|---|---|
−α | −1 | 0 | +1 | +α | |
TiO2:CeO2 weight percentage ratio, X1, (%) | 90:10 | 80:20 | 63:35 | 50:50 | 40:60 |
Milling speed, X2, (rpm) | 149 | 200 | 275 | 350 | 400 |
Milling speed, X3,(min) | 15 | 40 | 77.5 | 115 | 141 |
No. | Researchers | Materials | Ball Mill Jar | Input Parameters | PCA | Findings |
---|---|---|---|---|---|---|
1. | Zhang et al. (2017) [191] |
|
|
|
|
|
2. | Fullenwider et al. (2019) [148] |
|
|
|
|
|
3. | Prosviryakov at al. (2018) [47] |
|
|
|
|
|
4. | Bhouri and Mzali (2019) [192] |
|
|
|
|
|
5. | Dias et al. (2021) [105] |
|
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.K.; Abd Rahim, S.Z.; Al Bakri Abdullah, M.M.; Yin, A.T.M.; Ghazali, M.F.; Omar, M.F.; Nemeș, O.; Sandu, A.V.; Vizureanu, P.; Abdellah, A.E.-h. Producing Metal Powder from Machining Chips Using Ball Milling Process: A Review. Materials 2023, 16, 4635. https://doi.org/10.3390/ma16134635
Wei LK, Abd Rahim SZ, Al Bakri Abdullah MM, Yin ATM, Ghazali MF, Omar MF, Nemeș O, Sandu AV, Vizureanu P, Abdellah AE-h. Producing Metal Powder from Machining Chips Using Ball Milling Process: A Review. Materials. 2023; 16(13):4635. https://doi.org/10.3390/ma16134635
Chicago/Turabian StyleWei, Leong Kean, Shayfull Zamree Abd Rahim, Mohd Mustafa Al Bakri Abdullah, Allice Tan Mun Yin, Mohd Fathullah Ghazali, Mohd Firdaus Omar, Ovidiu Nemeș, Andrei Victor Sandu, Petrica Vizureanu, and Abdellah El-hadj Abdellah. 2023. "Producing Metal Powder from Machining Chips Using Ball Milling Process: A Review" Materials 16, no. 13: 4635. https://doi.org/10.3390/ma16134635
APA StyleWei, L. K., Abd Rahim, S. Z., Al Bakri Abdullah, M. M., Yin, A. T. M., Ghazali, M. F., Omar, M. F., Nemeș, O., Sandu, A. V., Vizureanu, P., & Abdellah, A. E. -h. (2023). Producing Metal Powder from Machining Chips Using Ball Milling Process: A Review. Materials, 16(13), 4635. https://doi.org/10.3390/ma16134635