Effect of Microstructure on High-Speed Tensile Mechanical Properties of Ti-1300 Alloy
Abstract
:1. Introduction
2. Experiment Section
2.1. Experimental Materials and Solution Treatment
2.2. Microstructure
2.3. Mechanical Properties
3. Results and Discussion
3.1. Microstructure of Ti-1300 Alloy after Solution Treatment
3.2. Microstructure
3.2.1. Phase Structure of Ti-1300 Alloy
3.2.2. Analysis of Deformation Microstructure of Ti-1300 Alloy
3.2.3. Analysis of the Deformed Microstructure of Ti-1300 Alloy
3.3. Mechanical Properties
3.3.1. Analysis of Mechanical Properties of Ti-1300 Alloy
3.3.2. Tensile Fracture Analysis of Ti-1300 Alloy
4. Conclusions
- (1)
- The single-β-phase Ti-1300 alloy does not present an obvious yielding stage. After the UTS point, an early decrease of stress indicates its limited work-hardening ability.
- (2)
- After high-speed tensile testing at 200 s−1 and 500 s−1, only β phase is observed. The main deformation mechanism is dislocation slip.
- (3)
- At different strain rates, the fracture mode is ductile fracture. At 500 s−1, a large number of tearing dimples are observed, which is due to the stress state in the local region with cracks.
- (4)
- The connection of micro-voids induced by the dislocation slip explains the ductile fracture mode.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pang, H.; Liu, Y.; Luo, J.; Li, C.; Li, H. Phase/Grain Boundary Assisted-3D Static Globularization Mechanism of TC17 Alloy Based on the Microstructure Reconstruction and In-Situ TEM Observation. J. Mater. Sci. Technol. 2023, 157, 246–261. [Google Scholar] [CrossRef]
- Rangel, A.; Lam, M.; Hocini, A.; Humblot, V.; Ameyama, K.; Migonney, V.; Dirras, G.; Falentin-Daudre, C. Bioactivation of New Harmonic Titanium Alloy to Improve and Control Cellular Response and Differentiation. IRBM 2023, 44, 100771. [Google Scholar] [CrossRef]
- Xun, L.; Ziming, W.; Shenliang, Y.; Zhiyuan, G.; Yongxin, Z.; Kangning, H. Influence of Turning Tool Wear on the Surface Integrity and Anti-fatigue Behavior of Ti1023. Adv. Mech. Eng. 2021, 13, 150–158. [Google Scholar] [CrossRef]
- Wu, C.; Zhao, Y.; Huang, S.; Lei, L.; Zhao, Q.; Sun, Q.; Zhou, L. Microstructure Tailoring and Impact Toughness of a Newly Developed High Strength Ti-5Al-3Mo-3V-2Cr-2Zr-1Nb-1Fe Alloy. Mater. Charact. 2021, 175, 111103. [Google Scholar] [CrossRef]
- Lu, J.; Du, Y.; Zhang, W.; Hu, J.; Wang, X.; Zhang, Y.; Zhao, Y. Microstructure Characteristics of Gradient Nano-Grained Ti-1300 Titanium Alloy Induced by Sliding Friction Treatment. Mater. Res. Express 2019, 6, 095004. [Google Scholar] [CrossRef]
- Tan, C.; Xiao, H.; Zhang, H.Y. Effect of Solution and Aging Treatment on Microstructure and Properties of TC4 Titanium Alloy Hot-Rolled Sheet by Sponge Titanium/Electrolytic Titanium Melting. Rare Metal Mat. Eng. 2020, 49, 4290–4296. [Google Scholar]
- Lu, J.; Zhao, Y.; Ge, P.; Zhang, Y.; Niu, H.; Zhang, W.; Zhang, P. Precipitation Behavior and Tensile Properties of New High Strength Beta Titanium Alloy Ti-1300. J. Alloys Compd. 2015, 637, 1–4. [Google Scholar] [CrossRef]
- Lu, J.W.; Zhao, Y.Q.; Ge, P.; Niu, H.Z.; Zhang, Y.S.; Zhang, W.; Zhang, P.X. Microstructure and Mechanical Properties of New High Strength Beta-Titanium Alloy Ti-1300. Mater. Sci. Eng. A 2015, 621, 182–189. [Google Scholar] [CrossRef]
- Qi, Y.L.; Zeng, L.Y.; Liu, W.; Sun, H.M.; Du, Y.; Xin, S.W.; Tan, W.L.; Zhang, S.Y. Effect of Extrusion Temperature and Thermal Treatment on Microstructure and Mechanical Properties of Ti-1300 Alloy Tube. Mater. Sci. Forum 2021, 5994, 1181–1187. [Google Scholar] [CrossRef]
- Zhao, Q.; Bolzoni, L.; Chen, Y.; Xu, Y.; Torrens, R.; Yang, F. Processing of Metastable Beta Titanium Alloy: Comprehensive Study on Deformation Behaviour and Exceptional Microstructure Variation Mechanisms. J. Mater. Sci. Technol. 2022, 126, 22–43. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, H.G.; Zhao, Z.D.; Zhang, Q.; Zhang, Q.M.; Jiang, F.; Li, X.M. Effect of Phase Composition on Self-Organization of Shear Bands in Ti-1300 Titanium Alloy. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2011, 528, 7506–7513. [Google Scholar] [CrossRef]
- Yang, Y.; Li, X.M.; Tong, X.L.; Zhang, Q.M.; Xu, C.Y. Effects of Microstructure on the Adiabatic Shearing Behaviors of Titanium Alloy. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2011, 528, 3130–3133. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, J.; Cao, S.; Pan, Y.; Huang, M.; Hu, Q.; Sun, Q.; Xiao, L.; Sun, J. Strong Deformation Anisotropies of Omega-Precipitates and Strengthening Mechanisms in Ti-10V-2Fe-3A1 Alloy Micropillars: Precipitates Shearing vs. Precipitates Disordering. Acta Mater. 2016, 117, 68–80. [Google Scholar] [CrossRef]
- Rheinheimer, W.; Hoffmann, M.J. Non-Arrhenius Behavior of Grain Growth in Strontium Titanate: New Evidence for a Structural Transition of Grain Boundaries. Scr. Mater. 2015, 101, 68–71. [Google Scholar] [CrossRef]
- Guan, X.R.; Chen, Q.; Qu, S.J.; Cao, G.J.; Wang, H.; Feng, A.H.; Chen, D.L. Adiabatic Shear Instability in a Titanium Alloy: Extreme Deformation-Induced Phase Transformation Nanotwinning and Grain Refinement. J. Mater. Sci. Technol. 2023, 150, 104–113. [Google Scholar] [CrossRef]
- Wan, M.P.; Zhao, Y.Q.; Zeng, W.D. Phase Transformation Kinetics of Ti-1300 Alloy during Continuous Heating. Rare Met. 2015, 34, 233–238. [Google Scholar] [CrossRef]
- Zhao, Q.; Sun, Q.; Xin, S.; Chen, Y.; Wu, C.; Wang, H.; Xu, J.; Wan, M.; Zeng, W.; Zhao, Y. High-Strength Titanium Alloys for Aerospace Engineering Applications: A Review on Melting-Forging Process. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2022, 845, 143260. [Google Scholar] [CrossRef]
- Zhao, H.Z.; Xiao, L.; Ge, P.; Sun, J.; Xi, Z.P. Hot Deformation Behavior and Processing Maps of Ti-1300 Alloy. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2014, 604, 111–116. [Google Scholar] [CrossRef]
- Ali, T.; Wang, L.; Cheng, X.; Cheng, H.; Yang, Y.; Liu, A.; Xu, X.; Zhou, Z.; Ning, Z.; Xu, Z.; et al. Mechanical (Compressive) Form of Driving Force Triggers the Phase Transformation From Beta to Omega & Alpha Phases in Metastable Beta Phase-Field Ti-5553 Alloy. J. Mater. Sci. Technol. 2021, 78, 238–246. [Google Scholar]
- Chen, Z.; Zhong, D.; Sun, Q.; Ma, X. Effect of Alpha Phase Fraction on the Dynamic Mechanical Behavior of a Dual-Phase Metastable Beta Titanium Alloy Ti-10V-2Fe-3Al. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2021, 816, 141322. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, L.; Liu, L.; Shi, X.; Huang, S.; Jiang, Y. Investigation of the Influence of Fe on the Microstructure and Properties of Ti5553 Near-beta Titanium Alloy with Combinatorial Approach. Int. J. Mater. Res. 2017, 108, 111487. [Google Scholar] [CrossRef]
- Yan, C.K.; Feng, A.H.; Qu, S.J.; Cao, G.J.; Sun, J.L.; Shen, J.; Chen, D.L. Dynamic Recrystallization of Titanium: Effect of Pre-Activated Twinning at Cryogenic Temperature. Acta Mater. 2018, 154, 311–324. [Google Scholar] [CrossRef]
- Zhao, S.P.; Feng, Z.D.; Li, L.X.; Zhao, X.J.; Lu, L.; Chen, S.; Zhang, N.B.; Cai, Y.; Luo, S.N. Dynamic Mechanical Properties, Deformation and Damage Mechanisms of Eutectic High-Entropy Alloy AlCoCrFeNi2.1 under Plate Impact. J. Mater. Sci. Technol. 2023, 134, 178–188. [Google Scholar] [CrossRef]
- Sharma, D.; Parfitt, D.; Roebuck, B.; Kada, S.R.; Fabijanic, D.; Fitzpatrick, M.E. Precipitation Behaviour of Single and Duplex Aged Metastable Beta-Ti Alloy, Ti-5Al-5Mo-5V-3Cr. Mater. Sci. Technol. 2023, 38, 1110–1117. [Google Scholar] [CrossRef]
- Ma, X.; Li, J.; Chen, Z.; Li, J.; Zhao, X.; Li, F. Abnormal Work Hardening in a TRIP-Assisted Metastable Beta Titanium Alloy under High Strain Rate Loading. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2022, 838, 142813. [Google Scholar] [CrossRef]
- Wang, H.; Xin, S.W.; Zhao, Y.Q.; Zhou, W.; Zeng, W.D. Forging Microstructure Tensile Properties Correlation in a New Near β High-Strength Titanium Alloy. Rare Met. 2021, 40, 2109–2117. [Google Scholar] [CrossRef]
- Lai, M.J.; Tasan, C.C.; Raabe, D. On the Mechanism of {332} Twinning in Metastable β Titanium Alloys. Acta Mater. 2016, 111, 173–186. [Google Scholar] [CrossRef]
- Mantri, S.A.; Sun, F.; Choudhuri, D.; Alam, T.; Gwalani, B.; Prima, F.; Banerjee, R. Deformation Induced Hierarchical Twinning Coupled with Omega Transformation in a Metastable β-Ti Alloy. J. Alloys Compd. 2019, 9, 1334. [Google Scholar] [CrossRef] [Green Version]
- Jain, J.; Cizek, P.; Hariharan, K. Transmission electron microscopy investigation on dislocation bands in pure Mg. Scr. Mater. 2017, 130, 133–137. [Google Scholar] [CrossRef]
- Kacher, J.; Yu, Q.; Chisholm, C.; Gammer, C.; Minor, A.M. In Situ TEM Nanomechanical Testing. In Proceedings of the Annual Conference and Exposition of the Society-for-Experimental-Mechanics on Experimental and Applied Mechanics, Costa Mesa, CA, USA, 8–11 June 2015; Volume 5, pp. 9–16. [Google Scholar]
- Wan, M.; Zhao, Y.; Zeng, W.; Cai, G. Effects of Cold Pre-Deformation on Aging Behavior and Mechanical Properties of Ti-1300 Alloy. J. Alloys Compd. 2015, 619, 383–388. [Google Scholar] [CrossRef]
- Guo, Z.; Ma, T.; Yang, X.; Tao, J.; Li, J.; Li, W.; Vairis, A. In-Situ Investigation on Dislocation Slip Concentrated Fracture Mechanism of Linear Friction Welded Dissimilar Ti17(α + β)/Ti17(β) Titanium Alloy Joint. Mater. Sci. Eng. A 2023, 872, 144991. [Google Scholar] [CrossRef]
- Guo, Z.; Miodownik, A.P.; Saunders, N.; Schillé, J.P. Influence of Stacking-Fault Energy on High Temperature Creep of Alpha Titanium Alloys. Scr. Mater. 2006, 54, 2175–2178. [Google Scholar] [CrossRef]
- Zhao, B.; Huang, P.; Zhang, L.; Li, S.; Zhang, Z.; Yu, Q. Temperature Effect on Stacking Fault Energy and Deformation Mechanisms in Titanium and Titanium-aluminium Alloy. Sci. Rep. 2020, 10, 3086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, W.; Li, J.; Liu, Y.; Kang, J.; Zhu, L.; Shu, D.; Peng, P.; She, D.; Meng, D.; Li, Y. Effects of Grain Size on Tensile Property and Fracture Morphology of 316L Stainless Steel. Mater. Lett. 2019, 254, 116–119. [Google Scholar] [CrossRef]
Material | Width | Thickness | Standard Distance | Inside Diameter |
---|---|---|---|---|
Ti-1300 | 4.91 | 1.973 | 12.5 | 5 |
Ti-1300 | 4.87 | 1.662 | 12.5 | 5 |
Strain Rate | Tensile Strength/MPa | Yield Strength/MPa | Elongation/% |
---|---|---|---|
200 s−1 | 1231 | 1107 | 11.3 |
500 s−1 | 1352 | 1259 | 10.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.-Y.; Liu, D.-R.; Pu, Z.-P. Effect of Microstructure on High-Speed Tensile Mechanical Properties of Ti-1300 Alloy. Materials 2023, 16, 4725. https://doi.org/10.3390/ma16134725
Zhang Z-Y, Liu D-R, Pu Z-P. Effect of Microstructure on High-Speed Tensile Mechanical Properties of Ti-1300 Alloy. Materials. 2023; 16(13):4725. https://doi.org/10.3390/ma16134725
Chicago/Turabian StyleZhang, Zhu-Ye, Dong-Rong Liu, and Zhen-Peng Pu. 2023. "Effect of Microstructure on High-Speed Tensile Mechanical Properties of Ti-1300 Alloy" Materials 16, no. 13: 4725. https://doi.org/10.3390/ma16134725
APA StyleZhang, Z.-Y., Liu, D.-R., & Pu, Z.-P. (2023). Effect of Microstructure on High-Speed Tensile Mechanical Properties of Ti-1300 Alloy. Materials, 16(13), 4725. https://doi.org/10.3390/ma16134725