Novel Insight into the Photophysical Properties and 2D Supramolecular Organization of Poly(3,4-ethylenedioxythiophene)/Permodified Cyclodextrins Polyrotaxanes at the Air–Water Interface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Synthesis
2.3.1. Synthesis of TMe-βCD and TMe-γCD
2.3.2. Synthesis of EDOT∙TMe-βCD and EDOT∙TMe-γCD
2.3.3. The Synthesis of Py-EDOT-Py
2.3.4. The Synthesis of Py-EDOT∙TMe-βCD-Py
2.3.5. The Synthesis of PEDOT∙TMe-βCD and PEDOT∙TMe-γCD PPs
2.3.6. The Synthesis of PEDOT∙TMe-βCD and PEDOT∙TMe-γCD PRs
3. Results and Discussion
3.1. Synthesis and Characterization
3.2. Thermal Analysis
3.3. Optical Properties
3.4. Electrochemical Properties
3.5. Surface Morphology
3.6. Dynamic Light Scattering (DLS)
3.7. Electrical Properties
3.8. 2D Supramolecular Organizations at the Air–Water Interface
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pankow, R.M.; Thompson, B.C. The development of conjugated polymers as the cornerstone of organic electronics. Polymer 2020, 207, 122874. [Google Scholar] [CrossRef]
- Luo, G.; Ren, X.; Zhang, S.; Wu, H.; Choy, W.C.H.; He, Z.; Cao, Y. Recent advances in organic photovoltaics: Device structure and optical engineering optimization on the nanoscale. Small 2016, 12, 1547–1571. [Google Scholar] [CrossRef]
- Rasmussen, S.C. Conjugated and conducting organic polymers: The first 150 years. ChemPlusChem 2020, 85, 1412–1429. [Google Scholar] [CrossRef] [PubMed]
- Bubnova, O.; Khan, Z.U.; Wang, H.; Braun, S.; Evans, D.R.; Fabretto, M.; Hojati-Talemi, P.; Dagnelund, D.; Arlin, J.-B.; Geerts, Y.H.; et al. Semi-metallic polymers. Nat. Mater. 2014, 13, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Gueye, M.N.; Carella, A.; Faure-Vincent, J.; Demadrille, R.; Simonato, J.-P. Progress in understanding structure and transport properties of PEDOT-based materials: A critical review. Prog. Mater. Sci. 2020, 108, 100616. [Google Scholar] [CrossRef]
- Ouyang, J. Recent advances of intrinsically conductive polymers. Acta Phys. Chim. Sin. 2018, 34, 1211–1220. [Google Scholar] [CrossRef]
- Kirchmeyer, S.; Reuter, K. Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J. Mater. Chem. 2005, 15, 2077–2088. [Google Scholar] [CrossRef]
- Roncali, J.; Blanchard, P.; Frère, P. 3,4-Ethylenedioxythiophene (EDOT) as a versatile building block for advanced functional π-conjugated systems. J. Mater. Chem. 2005, 15, 1589–1610. [Google Scholar] [CrossRef]
- Mohanapriya, M.K.; Deshmukh, K.; Basheer Ahamed, M.; Chidambaram, K.; Khadheer Pasha, S.K. Zeolite 4A filled poly (3, 4-ethylenedioxythiophene): (polystyrenesulfonate) (PEDOT: PSS) and polyvinyl alcohol (PVA) blend nanocomposites as high-k dielectric materials for embedded capacitor applications. Adv. Mat. Lett. 2016, 7, 996–1002. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, C.; Jiang, F.; Xu, J.; Liu, E. Effective treatment methods on PEDOT: PSS to enhance its thermoelectric performance. Synth. Met. 2017, 225, 31–40. [Google Scholar] [CrossRef]
- Horii, T.; Hikawa, H.; Katsunuma, M.; Okuzaki, H. Synthesis of highly conductive PEDOT:PSS and correlation with hierarchical structure. Polymer 2018, 140, 33–38. [Google Scholar] [CrossRef]
- Atifi, S.; Mirvakili, M.-N.; Hamad, W.Y. Structure, polymerization kinetics, and performance of poly(3,4-ethylenedioxythiophene): Cellulose nanocrystal nanomaterials. ACS Appl. Polym. Mater. 2022, 4, 5626–5637. [Google Scholar] [CrossRef]
- Chen, L.; Sheng, X.; Li, G.; Huang, F. Mechanically interlocked polymers based on rotaxanes. Chem. Soc. Rev. 2022, 51, 7046–7065. [Google Scholar] [CrossRef] [PubMed]
- Royakkers, J.; Bronstein, H. Macrocyclic encapsulated conjugated polymers. Macromolecules 2021, 54, 1083–1094. [Google Scholar] [CrossRef]
- Farcas, A.; Resmerita, A.-M. Supramolecular Chemistry: Synthesis and Phtophysical Properties of Conjugated Polyrotaxanes. In Encyclopedia of Physical Organic Chemistry; Wang, Z., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; Volume 3, pp. 2543–2582. [Google Scholar] [CrossRef]
- El Haitami, A.; Resmerita, A.-M.; Fichet, O.; Cantin, S.; Aubert, P.-H.; Farcas, A. Synthesis, photophysics and Langmuir films of polyfluorene/permodified cyclodextrin polyrotaxanes. Langmuir 2021, 37, 11406–11413. [Google Scholar] [CrossRef]
- Zhou, J.; Feng, H.; Sun, Q.; Xie, Z.; Pang, X.; Minari, T.; Liu, X.; Zhang, L. Resistance-switchable conjugated polyrotaxane for flexible high-performance RRAMs. Mater. Horiz. 2022, 9, 1526–1535. [Google Scholar] [CrossRef] [PubMed]
- Hirose, K.; Okada, S.; Umezaki, S.; Young, P.G.; Tobe, Y. Syntheses and stimuli-responsive rocking motions of a rotaxane bearing different stoppers. J. Photochem. Photobiol. A Chem. 2016, 331, 184–189. [Google Scholar] [CrossRef]
- Idris, M.; Bazzar, M.; Guzelturk, B.; Demir, H.V.; Tuncel, D. Cucurbit[7]uril-threaded fluorene–thiophene-based conjugated polyrotaxanes. RSC Adv. 2016, 6, 98109–98116. [Google Scholar] [CrossRef]
- Hart, L.F.; Hertzog, J.E.; Rauscher, P.M.; Rawe, B.W.; Tranquilli, M.M.; Rowan, S.J. Material properties and applications of mechanically interlocked polymers. Nat. Rev. Mater. 2021, 6, 508–530. [Google Scholar] [CrossRef]
- Aoki, D.; Takata, T. Mechanically linked supramolecular polymer architectures derived from macromolecular [2]rotaxanes: Synthesis and topology transformation. Polymer 2017, 128, 276–296. [Google Scholar] [CrossRef]
- Putnin, T.; Le, H.; Bui, T.-T.; Jakmunee, J.; Ounnunkad, K.; Péralta, S.; Aubert, P.-H.; Goubard, F.; Farcas, A. Poly(3,4-ethylenedioxythiophene/permethylated β-cyclodextrin) polypseudorotaxane and polyrotaxane: Synthesis, characterization and application as hole transporting materials in perovskite solar cells. Eur. Polym. J. 2018, 105, 250–256. [Google Scholar] [CrossRef]
- Xue, M.; Yang, Y.; Chi, X.; Yan, X.; Huang, F. Development of pseudorotaxanes and rotaxanes: From synthesis to stimuli-responsive motions to applications. Chem. Rev. 2015, 115, 7398–7501. [Google Scholar] [CrossRef] [PubMed]
- Shukla, T.; Arumugaperumal, R.; Raghunath, P.; Lin, M.-C.; Lin, C.-M.; Lin, H.-C. Novel supramolecular conjugated polyrotaxane as an acid-base controllable optical molecular switch. Sens. Actuators B Chem. 2017, 243, 84–95. [Google Scholar] [CrossRef]
- Hénon, S.; Meunier, J. Microscope at the Brewster angle: Direct observation of first-order phase transitions in monolayers. Rev. Sci. Instrum. 1991, 62, 936–939. [Google Scholar] [CrossRef]
- Farcas, A.; Tregnago, G.; Resmerita, A.-M.; Aubert, P.-H.; Cacialli, F. Synthesis and photophysical characteristics of polyfluorene polyrotaxanes. Beilstein J. Org. Chem. 2015, 11, 2677–2688. [Google Scholar] [CrossRef] [Green Version]
- Botsi, A.; Yannakopoulou, K.; Hadjoudis, E.; Perly, B. Structural aspects of permethylated cyclodextrins and comparison with their parent oligosaccharides, as derived from unequivocally assigned 1H and 13C NMR spectra in aqueous solutions. Magn. Reson. Chem. 1996, 34, 419–423. [Google Scholar] [CrossRef]
- Farcas, A.; Resmerita, A.-M.; Balan-Porcarasu, M.; Cojocaru, C.; Peptu, C.; Sava, I. Inclusion complexes of 3,4-ethylenedioxythiophene with per-modified β- and γ–cyclodextrins. Molecules 2023, 28, 3404. [Google Scholar] [CrossRef]
- Caira, M.R.; Bourne, S.A.; Mhlongo, W.T.; Dean, P.M. New crystalline forms of permethylated β-cyclodextrin. Chem. Commun. 2004, 19, 2216–2217. [Google Scholar] [CrossRef] [Green Version]
- Botsi, A.; Yannakopoulou, K.; Perly, B.; Hadjoudis, E. Positive or adverse effects of methylation on the inclusion behavior of cyclodextrins. A comparative NMR study using pheromone constituents of the olive fruit fly. J. Org. Chem. 1995, 60, 4017–4023. [Google Scholar] [CrossRef]
- Zhao, Q.; Jamal, R.; Zhangi, L.; Wang, M.; Abdiryim, T. The structure and properties of PEDOT synthesized by template-free solution method. Nanoscale Res. Lett. 2014, 9, 557. [Google Scholar] [CrossRef] [Green Version]
- Braga, S.S.; Paz, F.A.A.; Pillinger, M.; Seixas, J.D.; Romão, C.C.; Gonçalves, I.S. Structural studies of β-cyclodextrin and per-methylated β-cyclodextrin inclusion compounds of cyclopentadienyl metal carbonyl complexes. Eur. J. Inorg. Chem. 2006, 2006, 1662–1669. [Google Scholar] [CrossRef]
- Batra, G.; Sharma, S.; Kaushik, K.; Rao, C.; Kumar, P.; Kumar, K.; Ghosh, S.; Jariwala, D.; Stach, E.A.; Yadav, A.; et al. Structural and spectroscopic characterization of pyrene derived carbon nano dots: A single-particle level analysis. Nanoscale 2022, 14, 3568–3578. [Google Scholar] [CrossRef]
- Parenti, F.; Tassinari, F.; Libertini, E.; Lanzi, M.; Mucci, A. π-Stacking signature in NMR solution spectra of thiophene-based conjugated polymers. ACS Omega 2017, 2, 5775–5784. [Google Scholar] [CrossRef] [Green Version]
- Farcas, A.; Assaf, K.I.; Resmerita, A.-M.; Sacarescu, L.; Asandulesa, M.; Aubert, P.-H.; Nau, W.M. Cucurbit[7]uril-threaded poly(3,4-ethylenedioxythiophene):a novel processable conjugated polyrotaxane. Eur. J. Org. Chem. 2019, 2019, 2442–3450. [Google Scholar] [CrossRef]
- Ghosh, S.; Remita, H.; Ramos, L.; Dazzi, A.; Deniset-Besseau, A.; Beaunier, P.; Goubard, F.; Aubert, P.-H.; Brisset, F.; Remita, S. PEDOT nanostructures synthesized in hexagonal mesophases. New J. Chem. 2014, 38, 1106–1115. [Google Scholar] [CrossRef]
- Ikeda, T.; Higuchi, M.; Kurth, D.G. From thiophene [2]rotaxane to polythiophene polyrotaxane. J. Am. Chem. Soc. 2009, 131, 9158–9159. [Google Scholar] [CrossRef] [PubMed]
- Farcas, A.; Damoc, M.; Asandulesa, M.; Aubert, P.-H.; Tigoianu, R.I.; Ursu, E.L. The straightforward approach of tuning the photoluminescence and electrical properties of encapsulated PEDOT end-capped by pyrene. J. Mol. Liq. 2023, 376, 121461. [Google Scholar] [CrossRef]
- Brovelli, S.; Latini, G.; Frampton, M.J.; McDonnell, S.O.; Oddy, F.E.; Fenwick, O.; Anderson, H.L.; Cacialli, F. Tuning intrachain versus interchain photophysics via control of the threading ratio of conjugated polyrotaxanes. Nano Lett. 2008, 8, 4546–4551. [Google Scholar] [CrossRef]
- Jain, K.; Mehandzhiyski, A.Y.; Zozoulenko, I.; Wågberg, L. PEDOT:PSS nano-particles in aqueous media: A comparative experimental and molecular dynamics study of particle size, morphology and z-potential. J. Colloid Interface Sci. 2021, 584, 57–66. [Google Scholar] [CrossRef]
- Larsson, O.; Said, E.; Berggren, M.; Crispin, X. Insulator polarization mechanisms in polyelectrolyte-gated organic field-effect transistors. Adv. Funct. Mat. 2009, 19, 3334–3341. [Google Scholar] [CrossRef]
- Asandulesa, M.; Hamciuc, C.; Pui, A.; Virlan, C.; Lisa, G.; Barzic, A.I.; Oprisan, B. Cobalt ferrite/polyetherimide composites as thermally stable materials for electromagnetic interference shielding uses. Int. J. Mol. Sci. 2023, 24, 999. [Google Scholar] [CrossRef] [PubMed]
- Elloumi, A.K.; Miladi, I.A.; Serghei, A.; Taton, D.; Aissou, K.; Romdhane, H.B.; Drockenmuller, E. Partially biosourced poly(1,2,3-triazolium)-based diblock copolymers derived from levulinic acid. Macromolecules 2018, 51, 5820–5830. [Google Scholar] [CrossRef]
- Schwarze, M.; Gaul, C.; Scholz, R.; Bussolotti, F.; Hofacker, A.; Schellhammer, K.S.; Nell, B.; Naab, B.D.; Bao, Z.; Spoltore, D.; et al. Molecular parameters responsible for thermally activated transport in doped organic semiconductors. Nat. Mater. 2019, 18, 242–248. [Google Scholar] [CrossRef]
- Sanchis, M.J.; Redondo-Foj, B.; Carsi, M.; Ortiz-Serna, P.; Culebras, M.; Gomez, C.M.; Cantarero, A.; Munoz-Espi, R. Controlling dielectrical properties of polymer blends through defined PEDOT nanostructures. RSC Adv. 2016, 6, 62024–62030. [Google Scholar] [CrossRef]
- Molnár, A. Synthetic application of cyclodextrins in combination with metal ions, complexes, and metal particles. ChemCatChem 2021, 13, 1424–1474. [Google Scholar] [CrossRef]
Sample | Mn (g∙moL−1) | Mw/Mn |
---|---|---|
PEDOT | 700 | 1.10 |
PEDOT∙TMe-βCD | 15,000 | 1.37 |
PEDOT∙TMe-γCD | 13,000 | 1.49 |
Sample | Step | Tonset (a) (°C) | Tpeak (b) (°C) | Tendset (c) (°C) | W (d) (%) | Residue (e) (%) |
---|---|---|---|---|---|---|
PEDOT | I | 187 | 216 | 265 | 4.34 | |
II | 308 | 367 | 399 | 40.41 | 37.13 | |
III | 670 | 698 | 745 | 18.12 | ||
PEDOT∙TMe-βCD | I | 207 | 374 | 418 | 55.00 | 45.00 |
Sample | Solvent | λex (nm) | λem (nm) | τ1 (ns) | τ2 (ns) | ΦFL (%) | ΦPH (%) |
---|---|---|---|---|---|---|---|
PEDOT∙Tme-βCD | H2O | 375 | 403 | 5.498 (66.79%) | 28.947(33.21%) | 2.05 | 0.05 |
PEDOT∙Tme-γCD | “ | “ | 404 | 1.766 (29.31%) | 9.706 (70.69%) | 2.19 | 0.10 |
PEDOT∙Tme-βCD | can | 355 | 391 | 1134 (69.80%) | 8937 (30.20%) | 4.89 | 76.17 |
PEDOt∙TMe-γCD | “ | “ | 390 | 1.377 (21.88%) | 10.492 (78.12%) | 2.87 | 47.22 |
Sample | −50 °C | σDC (S∙cm−1) 25 °C | 200 °C | Ea (meV) |
---|---|---|---|---|
PEDOT∙TMe-βCD | 6.2 × 10−7 | 2.0 × 10−6 | 2.3 × 10−5 | 138 |
PEDOT∙TMe-γCD | 3.3 × 10−7 | 1.2 × 10−6 | 6.6 × 10−5 | 148 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Haitami, A.; Resmerita, A.-M.; Ursu, L.E.; Asandulesa, M.; Cantin, S.; Farcas, A. Novel Insight into the Photophysical Properties and 2D Supramolecular Organization of Poly(3,4-ethylenedioxythiophene)/Permodified Cyclodextrins Polyrotaxanes at the Air–Water Interface. Materials 2023, 16, 4757. https://doi.org/10.3390/ma16134757
El Haitami A, Resmerita A-M, Ursu LE, Asandulesa M, Cantin S, Farcas A. Novel Insight into the Photophysical Properties and 2D Supramolecular Organization of Poly(3,4-ethylenedioxythiophene)/Permodified Cyclodextrins Polyrotaxanes at the Air–Water Interface. Materials. 2023; 16(13):4757. https://doi.org/10.3390/ma16134757
Chicago/Turabian StyleEl Haitami, Alae, Ana-Maria Resmerita, Laura Elena Ursu, Mihai Asandulesa, Sophie Cantin, and Aurica Farcas. 2023. "Novel Insight into the Photophysical Properties and 2D Supramolecular Organization of Poly(3,4-ethylenedioxythiophene)/Permodified Cyclodextrins Polyrotaxanes at the Air–Water Interface" Materials 16, no. 13: 4757. https://doi.org/10.3390/ma16134757
APA StyleEl Haitami, A., Resmerita, A. -M., Ursu, L. E., Asandulesa, M., Cantin, S., & Farcas, A. (2023). Novel Insight into the Photophysical Properties and 2D Supramolecular Organization of Poly(3,4-ethylenedioxythiophene)/Permodified Cyclodextrins Polyrotaxanes at the Air–Water Interface. Materials, 16(13), 4757. https://doi.org/10.3390/ma16134757