Laser Ablation-Generated Crystalline Selenium Nanoparticles Prevent Damage of DNA and Proteins Induced by Reactive Oxygen Species and Protect Mice against Injuries Caused by Radiation-Induced Oxidative Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of Selenium Nanoparticles
2.2. Animals
2.3. The Effect of Ionizing Radiation
2.4. Survival of Mice
2.5. Survival of Cell Cultures
2.6. Hematology
2.7. Micronucleus Test
2.8. Measurement of Protein Oxidation Levels
2.9. Real-Time PCR
2.10. Measurement of the Concentration of Hydrogen Peroxide and Hydroxyl Radicals
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Obrador, E.; Salvador, R.; Villaescusa, J.I.; Soriano, J.M.; Estrela, J.M.; Montoro, A. Radioprotection and Radiomitigation: From the Bench to Clinical Practice. Biomedicines 2020, 8, 461. [Google Scholar] [CrossRef] [PubMed]
- Bykov, V.N.; Grebenyuk, A.N.; Ushakov, I.B. The Use of Radioprotective Agents to Prevent Effects Associated with Aging. Biol. Bull. Russ. Acad. Sci. 2019, 46, 1657–1670. [Google Scholar] [CrossRef]
- Grebenyuk, A.N.; Gladkikh, V.D. Modern Condition and Prospects for the Development of Medicines towards Prevention and Early Treatment of Radiation Damage. Biol. Bull. Russ. Acad. Sci. 2019, 46, 1540–1555. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Popova, N.R.; Bruskov, V.I. Radioprotective substances: History, trends and prospects. Biophysics 2015, 60, 659–667. [Google Scholar] [CrossRef]
- Serov, D.A.; Khabatova, V.V.; Tikhonova, I.V.; Reut, V.E.; Pobedonostsev, R.V.; Astashev, M.E. Study of the Effects of Selenium Nanoparticles and Their Combination with Immunoglobulins on the Survival and Functional State of Polymorphonuclear Cells. Opera Medica Physiol. 2022, 9, 137–159. [Google Scholar] [CrossRef]
- Weekley, C.M.; Harris, H.H. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem. Soc. Rev. 2013, 42, 8870–8894. [Google Scholar] [CrossRef]
- Khabatova, V.V.; Serov, D.A.; Tikhonova, I.V.; Astashev, M.E.; Nagaev, E.I.; Sarimov, R.M.; Matveyeva, T.A.; Simakin, A.V.; Gudkov, S.V. Selenium Nanoparticles Can Influence the Immune Response Due to Interactions with Antibodies and Modulation of the Physiological State of Granulocytes. Pharmaceutics 2022, 14, 2772. [Google Scholar] [CrossRef]
- Mal’tseva, V.N.; Goltyaev, M.V.; Turovsky, E.A.; Varlamova, E.G. Immunomodulatory and Anti-Inflammatory Properties of Selenium-Containing Agents: Their Role in the Regulation of Defense Mechanisms against COVID-19. Int. J. Mol. Sci. 2022, 23, 2360. [Google Scholar] [CrossRef]
- Liu, T.; Zeng, L.; Jiang, W.; Fu, Y.; Zheng, W.; Chen, T. Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomedicine 2015, 11, 947–958. [Google Scholar] [CrossRef]
- Varlamova, E.G. Participation of selenoproteins localized in the ER in the processes occurring in this organelle and in the regulation of carcinogenesis-associated processes. J. Trace Elem. Med. Biol. 2018, 48, 172–180. [Google Scholar] [CrossRef]
- Masukawa, T. Pharmacological and toxicological aspects of inorganic and organic selenium compounds. In Organic Selenium and Tellurium Compounds; Patai, S., Ed.; John Wiley & Sons, Inc.: Chichester, UK, 2010; pp. 377–392. [Google Scholar]
- Vakhrusheva, T.V.; Sokolov, A.V.; Moroz, G.D.; Kostevich, V.A.; Gorbunov, N.P.; Smirnov, I.P.; Grafskaia, E.N.; Latsis, I.A.; Panasenko, O.M.; Lazarev, V.N. Effects of Synthetic Short Cationic Antimicrobial Peptides on the Catalytic Activity of Myeloperoxidase, Reducing Its Oxidative Capacity. Antioxidants 2022, 11, 2419. [Google Scholar] [CrossRef]
- Pizzuti, V.; Paris, F.; Marrazzo, P.; Bonsi, L.; Alviano, F. Mitigating Oxidative Stress in Perinatal Cells: A Critical Step toward an Optimal Therapeutic Use in Regenerative Medicine. Biomolecules 2023, 13, 971. [Google Scholar] [CrossRef]
- Nasr, M.; Naeem, S.A.; El-Shenbaby, I.; Mohamed, F.M.A.; Mahmoud, S.M.; Abuamara, T.M.M.; Abd-Elhay, W.M.; Elbayoumy, F.M.A.E.; Elkot, A.; Shikhon, T.; et al. Pomegranate Seeds and Peel Ethanolic Extracts Anticancer Potentials and Related Genetic, Histological, Immunohistochemical, Apoptotic and Oxidative Stress Profiles: In vitro Study. J. Exp. Pharmacol. 2023, 15, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Ushakov, I.B.; Vasin, M.V. Pharmacologic Protection in Distant Space: Current View. Biol. Bull. 2019, 46, 1524–1532. [Google Scholar] [CrossRef]
- Howard, D.; Sebastian, S.; Le, Q.V.; Thierry, B.; Kempson, I. Chemical Mechanisms of Nanoparticle Radiosensitization and Radioprotection: A Review of Structure-Function Relationships Influencing Reactive Oxygen Species. Int. J. Mol. Sci. 2020, 16, 579. [Google Scholar] [CrossRef] [Green Version]
- Shimazu, F.; Tappel, A.l. Selenoamino acids: Decrease of radiation damage to amino acids and proteins. Science 1964, 143, 369–371. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.F.; Hoover, R.L.; Kumar, K.S. Selenium pretreatment enhances the radioprotective effect and reduces the lethal toxicity of WR-2721. Free Radic. Res. Commun. 1987, 3, 33–38. [Google Scholar] [CrossRef]
- Weiss, J.F.; Srinivasan, V.; Kumar, K.S.; Landauer, M.R. Radioprotection by metals: Selenium. Adv. Space Res. 1992, 12, 223–231. [Google Scholar] [CrossRef]
- Drachouv, I.S.; Legeza, V.I.; Turlakov, Y.S. Protection from Radiation by Selenium. Radiatsionnaia Biol. Radioecol. 2013, 53, 475–480. [Google Scholar]
- Chen, W.; Li, Y.; Yang, S.; Yue, L.; Jiang, Q.; Xia, W. Synthesis and antioxidant properties of chitosan and carboxymethyl chitosan-stabilized selenium nanoparticles. Carbohydr. Polym. 2015, 132, 574–581. [Google Scholar] [CrossRef]
- Shafeev, G.A.; Barmina, E.V.; Pimpha, N.; Rakov, I.I.; Simakin, A.V.; Sharapov, M.G.; Uvarov, O.V.; Gudkov, S.V. Laser generation and fragmentation of selenium nanoparticles in water and their testing as an additive to fertilisers. Quantum Electron. 2021, 51, 615–618. [Google Scholar] [CrossRef]
- Simakin, A.V.; Baimler, I.V.; Smirnova, V.V.; Uvarov, O.V.; Kozlov, V.A.; Gudkov, S.V. Evolution of the Size Distribution of Gold Nanoparticles under Laser Irradiation. Phys. Wave Phenom. 2021, 29, 102–107. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Astashev, M.E.; Baimler, I.V.; Uvarov, O.V.; Voronov, V.V.; Simakin, A.V. Laser-Induced Optical Breakdown of an Aqueous Colloidal Solution Containing Terbium Nanoparticles: The Effect of Oxidation of Nanoparticles. J. Phys. Chem. B 2022, 126, 5678–5688. [Google Scholar] [CrossRef]
- Baimler, I.V.; Simakin, A.V.; Chevokin, V.K.; Podvyaznikov, V.A.; Gudkov, S.V. Features of optical breakdown of aqueous colloidal solutions of ferric oxide (Fe2O3) nanoparticles occurring on individual or on two closely located nanoparticles. Chem. Phys. Lett. 2021, 776, 138697. [Google Scholar] [CrossRef]
- Baymler, I.V.; Simakin, A.V.; Gudkov, S.V. Investigation of the laser-induced breakdown plasma, acoustic vibrations and dissociation processes of water molecules caused by laser breakdown of colloidal solutions containing Ni nanoparticles. Plasma Sources Sci. Technol. 2021, 30, 125015. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Gudkova, O.Y.; Chernikov, A.V.; Bruskov, V.I. Protection of mice against X-ray injuries by the post-irradiation administration of guanosine and inosine. Int. J. Radiat. Biol. 2009, 85, 116–125. [Google Scholar] [CrossRef]
- Astashev, M.E.; Sarimov, R.M.; Serov, D.A.; Matveeva, T.A.; Simakin, A.V.; Ignatenko, D.N.; Burmistrov, D.E.; Smirnova, V.V.; Kurilov, A.D.; Mashchenko, V.I.; et al. Antibacterial behavior of organosilicon composite with nano aluminum oxide without influencing animal cells. React. Funct. Polym. 2022, 170, 105143. [Google Scholar] [CrossRef]
- Asadullina, N.R.; Usacheva, A.M.; Gudkov, S.V. Protection of mice against X-ray injuries by the post-irradiation administration of inosine-5’-monophosphate. J. Radiat. Res. 2012, 53, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Gudkov, S.V.; Guryev, E.L.; Gapeyev, A.B.; Sharapov, M.G.; Bunkin, N.F.; Shkirin, A.V.; Zabelina, T.S.; Glinushkin, A.P.; Sevost’yanov, M.A.; Belosludtsev, K.N.; et al. Unmodified hydrated C60 fullerene molecules exhibit antioxidant properties, prevent damage to DNA and proteins induced by reactive oxygen species and protect mice against injuries caused by radiation-induced oxidative stress. Nanomed. Nanotechnol. Biol. Med. 2019, 15, 37–46. [Google Scholar] [CrossRef]
- Asadullina, N.R.; Usacheva, A.M.; Smirnova, V.S.; Gudkov, S.V. Antioxidative and radiation modulating properties of guanosine-5’-monophosphate. Nucleot. Nucleos. Nucl. Acids 2010, 29, 786–799. [Google Scholar] [CrossRef]
- Sharapov, M.G.; Novoselov, V.I.; Penkov, N.V.; Fesenko, E.E.; Vedunova, M.V.; Bruskov, V.I.; Gudkov, S.V. Protective and adaptogenic role of peroxiredoxin 2 (Prx2) in neutralization of oxidative stress induced by ionizing radiation. Free Radic. Biol. Med. 2019, 134, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Bruskov, V.I.; Karp, O.E.; Garmash, S.A.; Shtarkman, I.N.; Chernikov, A.V.; Gudkov, S.V. Prolongation of oxidative stress by long-lived reactive protein species induced by X-ray radiation and their genotoxic action. Free. Radic. Res. 2012, 46, 1280–1290. [Google Scholar] [CrossRef] [PubMed]
- Baimler, I.V.; Simakin, A.V.; Uvarov, O.V.; Volkov, M.Y.; Gudkov, S.V. Generation of Hydroxyl Radicals during Laser Breakdown of Aqueous Solutions in the Presence of Fe and Cu Nanoparticles of Different Sizes. Phys. Wave Phenom. 2020, 28, 107–110. [Google Scholar] [CrossRef]
- Chernikov, A.V.; Gudkov, S.V.; Shtarkman, I.N.; Bruskov, V.I. Oxygen effect in heat-mediated damage to DNA. Biofizika 2007, 52, 244–251. [Google Scholar]
- Bruskov, V.I.; Chernikov, A.V.; Gudkov, S.V.; Masalimov, Z.K. Thermal Activation of the Reducing Properties of Seawater Anions. Biofizika 2003, 48, 1022–1029. [Google Scholar]
- Sevostyanov, M.A.; Kolmakov, A.G.; Sergiyenko, K.V.; Kaplan, M.A.; Baikin, A.S.; Gudkov, S.V. Mechanical, physical-chemical and biological properties of the new Ti-30Nb-13Ta-5Zr alloy. J. Mater. Sci. 2020, 55, 14516–14529. [Google Scholar] [CrossRef]
- Ivanov, V.E.; Usacheva, A.M.; Chernikov, A.V.; Bruskov, V.I.; Gudkov, S.V. Formation of long-lived reactive species of blood serum proteins induced by low-intensity irradiation of helium-neon laser and their involvement in the generation of reactive oxygen species. J. Photochem. Photobiol. B 2017, 176, 36–43. [Google Scholar] [CrossRef]
- Sharapov, M.G.; Novoselov, V.I.; Fesenko, E.E.; Bruskov, V.I.; Gudkov, S.V. The role of peroxiredoxin 6 in neutralization of X-ray mediated oxidative stress: Effects on gene expression, preservation of radiosensitive tissues and postradiation survival of animals. Free Radic. Res. 2017, 51, 148–166. [Google Scholar] [CrossRef]
- Mercurio, F.; Manning, A. NF-κB as a primary regulator of the stress response. Oncogene 1999, 18, 6163–6171. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.-Z.; Liu, M.-Q.; Chen, H.-W.; Wu, Z.-L.; Gao, Y.-C.; Ma, Z.-J.; He, X.-G.; Kang, X.-W. NF-κB signalling pathways in nucleus pulposus cell function and intervertebral disc degeneration. Cell Prolif. 2021, 54, e13057. [Google Scholar] [CrossRef] [PubMed]
- Kaltschmidt, C.; Banz-Jansen, C.; Benhidjeb, T.; Beshay, M.; Förster, C.; Greiner, J.; Hamelmann, E.; Jorch, N.; Mertzlufft, F.; Pfitzenmaier, J. A Role for NF-κB in Organ Specific Cancer and Cancer Stem Cells. Cancers 2019, 11, 655. [Google Scholar] [CrossRef] [Green Version]
- Quintana, M.; Haro-Poniatowski, E.; Morales, J.; Batina, N. Synthesis of selenium nanoparticles by pulsed laser ablation. Appl. Surf. Sci. 2002, 195, 175–186. [Google Scholar] [CrossRef]
- Van Overscheldel, O.; Guisbiers, G.; Snyders, R. Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water. APL Mater. 2013, 1, 042114. [Google Scholar] [CrossRef]
- Kuzmin, P.G.E.; Shafeev, G.A.; Voronov, V.V.; Raspopov, R.V.; Arianova, E.A.; Trushina, E.N.; Gmoshinskii, I.V.; Khotimchenko, S.A.E. Bioavailable nanoparticles obtained in laser ablation of a selenium target in water. Quantum Electron. 2012, 42, 1042. [Google Scholar] [CrossRef]
- Roldugin, V.I.; Fedotov, M.A.; Folmanis, G.E.; Kovalenko, L.V.; Tananaev, I.G. Formation of Aqueous Colloidal Solutions of Selenium and Silicon by Laser Ablation. Dokl. Phys. Chem. 2015, 463, 161–164. [Google Scholar] [CrossRef]
- Guisbiers, G.; Lara, H.H.; Mendoza-Cruz, R.; Naranjo, G.; Vincent, B.A.; Peralta, X.G.; Nash, K.L. Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 1095–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breccia, A.; Badiello, R.; Trenta, A.; Mattii, M. On the chemical radioprotection by organic selenium compounds in vivo. Radiat. Res. 1969, 38, 483–492. [Google Scholar] [CrossRef]
- Shakibaie, M.; Shahverdi, A.R.; Faramarzi, M.A.; Hassanzadeh, G.R.; Rahimi, H.R.; Sabzevari, O. Acute and subacute toxicity of novel biogenic selenium nanoparticles in mice. Pharm. Biol. 2013, 51, 58–63. [Google Scholar] [CrossRef]
- Zhang, J.-S.; Gao, X.-Y.; Zhang, L.-D.; Bao, Y.-P. Biological effects of a nano red elemental selenium. BioFactors 2001, 15, 27–38. [Google Scholar] [CrossRef]
- Prasad, K.S.; Patel, H.; Patel, T.; Patel, K.; Selvaraj, K. Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage. Colloids Surf. B Biointerfaces 2013, 103, 261–266. [Google Scholar] [CrossRef]
- Hassanin, K.M.A.; El-Kawi, S.H.A.; Hashem, K.S. The prospective protective effect of selenium nanoparticles against chromium-induced oxidative and cellular damage in rat thyroid. Int. J. Nanomed. 2013, 8, 1713–1720. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zheng, H.; Jiang, J.; Li, Z.; Jiang, D.; Shi, X.; Wang, H.; Jiang, J.; Xie, Q.; Gao, M.; et al. Engineering micro oxygen factories to slow tumour progression via hyperoxic microenvironments. Nat. Commun. 2022, 13, 4495. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, W.; Zheng, H.; Chen, X.; Liu, X.; Xie, Q.; Cai, X.; Zhang, Z.; Li, R. Nano-enabled photosynthesis in tumours to activate lipid peroxidation for overcoming cancer resistances. Biomaterials 2022, 285, 121561. [Google Scholar] [CrossRef] [PubMed]
- Rezvanfar, M.A.; Rezvanfar, M.A.; Shahverdi, A.R.; Ahmadi, A.; Baeeri, M.; Mohammadirad, A.; Abdollahi, M. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles. Toxicol. Appl. Pharmacol. 2013, 266, 356–365. [Google Scholar] [CrossRef]
- Hogan, G.R. Selenate- and selenomethionine-induced leukopenia in ICR female mice. J. Toxicol. Environ. Health A 1998, 53, 113–119. [Google Scholar] [CrossRef]
- Shaparov, M.G.; Gudkov, S.V.; Lankin, V.Z.; Novoselov, V.I. Role of Glutathione Peroxidases and Peroxiredoxins in Free Radical-Induced Pathologies. Biochemistry 2021, 86, 1418–1433. [Google Scholar] [CrossRef]
- Musalov, M.V.; Potapov, V.A.; Maylyan, A.A.; Khabibulina, A.G.; Zinchenko, S.V.; Amosova, S.V. Selenium Dihalides Click Chemistry: Highly Efficient Stereoselective Addition to Alkynes and Evaluation of Glutathione Peroxidase-Like Activity of Bis(E-2-halovinyl) Selenides. Molecules 2022, 27, 1050. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Yuan, Q.; Gao, L.; Cai, P.; Zhu, H.; Liu, R.; Wang, Y.; Wei, Y.; Huang, G.; Liang, J.; et al. Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles. Biomaterials 2014, 35, 8854–8866. [Google Scholar] [CrossRef] [PubMed]
- Sharapov, M.G.; Gudkov, S.V. Peroxiredoxin 1—Multifunctional antioxidant enzyme, protects from oxidative damages and increases the survival rate of mice exposed to total body irradiation. Arch. Biochem. Biophys. 2021, 697, 108671. [Google Scholar] [CrossRef]
- Zhang, J.; Taylor, E.W.; Bennett, K.; Saad, R.; Rayman, M.P. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am. J. Clin. Nutr. 2020, 111, 1297–1299. [Google Scholar] [CrossRef]
Treatment | Days after Irradiation | ||||||
---|---|---|---|---|---|---|---|
0 | 1 | 3 | 5 | 10 | 15 | 30 | |
Food/Water Intake, g Food/Water Intake, % * | |||||||
0 Gy | 4.9/7.4 | 5.0/7.5 | 5.0/7.4 | 4.9/7.5 | 4.9/7.4 | 5.0/7.4 | 5.1/7.5 |
0/0 | +2/+1 | +2/0 | 0/+1 | 0/0 | +2/0 | +4/+1 | |
(10) | (10) | (10) | (10) | (10) | (10) | (10) | |
7 Gy | 5.0/7.5 | 3.7/4.2 | 3.5/2.7 | 3.0/4.0 | 1.9/3.4 | - | - |
0/0 | −26/−44 | −30/−64 | −40/−47 | −62/−55 | - | - | |
(10) | (10) | (10) | (9) | (1) | (0) | (0) | |
0 Gy + SeNPs | 5.0/7.4 | 4.9/7.5 | 4.9/7.5 | 5.0/7.4 | 4.9/7.4 | 5.1/7.4 | 5.0/7.4 |
0/0 | −2/+1 | −2/+1 | 0/0 | −2/0 | +2/0 | +2/0 | |
(10) | (10) | (10) | (10) | (10) | (10) | (10) | |
7 Gy + SeNPs | 4.9/7.5 | 4.5/6.3 | 4.0/5.5 | 4.0/6.1 | 4.5/6.8 | 4.9/7.1 | 4.8/7.6 |
0/0 | −8/−16 | −18/−27 | −18/−19 | −8/−9 | 0/−5 | −2/+1 | |
(10) | (10) | (10) | (10) | (8) | (6) | (5) |
Genes | Relative Gene Expression | |||
---|---|---|---|---|
0 Gy | 1.5 Gy | |||
Control | Se NPs | Control | Se NPs | |
HO-1 | 8.5 × 10−3 | 7.2 × 10−3 | 1.4 × 10−3 (↓) | 4.3 × 10−3 |
HSP90 | 3.2 × 10−2 | 2.6 × 10−2 | 1.2 × 10−2 (↓) | 3.3 × 10−2 |
NFkb | 1.9 × 10−4 | 2.9 × 10−4 | 2.0 × 10−3 (↑) | 7.9 × 10−4 (↑) |
NRF2 | 1.0 × 10−2 | 0.5 × 10−2 (↓) | 0.3 × 10−2 (↓) | 1.2 × 10−2 |
Catalase | 3.0 × 10−3 | 3.3 × 10−3 | 1.5 × 10−3 (↓) | 1.8 × 10−3 |
SOD2 | 1.8 × 10−6 | 2.5 × 10−6 | 1.2 × 10−6 | 3.7 × 10−6 (↑) |
Prx6 | 9.2 × 10−3 | 8.5 × 10−2 (↑) | 1.1 × 10−1 (↑) | 2.8 × 10−2 (↑) |
Xrcc4 | 6.8 × 10−4 | 8.8 × 10−4 | 1.8 × 10−3 (↑) | 1.4 × 10−3 (↑) |
Xrcc5 | 6.3 × 10−3 | 5.5 × 10−3 | 9.3 × 10−3 | 1.9 × 10−2 (↑) |
TNF-α | 2.5 × 10−3 | 3.1 × 10−3 | 2.4 × 10−3 | 1.9 × 10−3 |
AP-1 | 2.3 × 10−2 | 2.2 × 10−2 | 0.6 × 10−2 (↓) | 2.5 × 10−2 |
Ki67 | 6.1 × 10−3 | 4.9 × 10−3 | 5.2 × 10−3 | 3.5 × 10−3 |
IL6 | 2.0 × 10−2 | 2.9 × 10−2 | 1.8 × 10−2 | 1.4 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gudkov, S.V.; Gao, M.; Simakin, A.V.; Baryshev, A.S.; Pobedonostsev, R.V.; Baimler, I.V.; Rebezov, M.B.; Sarimov, R.M.; Astashev, M.E.; Dikovskaya, A.O.; et al. Laser Ablation-Generated Crystalline Selenium Nanoparticles Prevent Damage of DNA and Proteins Induced by Reactive Oxygen Species and Protect Mice against Injuries Caused by Radiation-Induced Oxidative Stress. Materials 2023, 16, 5164. https://doi.org/10.3390/ma16145164
Gudkov SV, Gao M, Simakin AV, Baryshev AS, Pobedonostsev RV, Baimler IV, Rebezov MB, Sarimov RM, Astashev ME, Dikovskaya AO, et al. Laser Ablation-Generated Crystalline Selenium Nanoparticles Prevent Damage of DNA and Proteins Induced by Reactive Oxygen Species and Protect Mice against Injuries Caused by Radiation-Induced Oxidative Stress. Materials. 2023; 16(14):5164. https://doi.org/10.3390/ma16145164
Chicago/Turabian StyleGudkov, Sergey V., Meng Gao, Alexander V. Simakin, Alexey S. Baryshev, Roman V. Pobedonostsev, Ilya V. Baimler, Maksim B. Rebezov, Ruslan M. Sarimov, Maxim E. Astashev, Anastasia O. Dikovskaya, and et al. 2023. "Laser Ablation-Generated Crystalline Selenium Nanoparticles Prevent Damage of DNA and Proteins Induced by Reactive Oxygen Species and Protect Mice against Injuries Caused by Radiation-Induced Oxidative Stress" Materials 16, no. 14: 5164. https://doi.org/10.3390/ma16145164
APA StyleGudkov, S. V., Gao, M., Simakin, A. V., Baryshev, A. S., Pobedonostsev, R. V., Baimler, I. V., Rebezov, M. B., Sarimov, R. M., Astashev, M. E., Dikovskaya, A. O., Molkova, E. A., Kozlov, V. A., Bunkin, N. F., Sevostyanov, M. A., Kolmakov, A. G., Kaplan, M. A., Sharapov, M. G., Ivanov, V. E., Bruskov, V. I., ... Shafeev, G. A. (2023). Laser Ablation-Generated Crystalline Selenium Nanoparticles Prevent Damage of DNA and Proteins Induced by Reactive Oxygen Species and Protect Mice against Injuries Caused by Radiation-Induced Oxidative Stress. Materials, 16(14), 5164. https://doi.org/10.3390/ma16145164