Characterization of Bamboo Culm as Potential Fibre for Composite Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Location and Sample Collection
2.3. Determination of Moisture Content (MC)
2.4. Measuring the Basic Density (BD)
2.5. Bamboo Culm Shrinkage
2.6. Measuring the Degree of Crystallinity (DOC)
2.7. Measuring Thermal Properties of Fibres
2.8. Measuring Single Fibres: The Tensile Test
2.9. Statistical Analysis
3. Result and Discussion
3.1. Measurement of MC
3.2. Measurement of BDs
3.3. Measurement of Radial Shrinkage (RASH)
3.4. Measurement of Tangential Shrinkage (TASH)
3.5. Physical Properties Using ANOVA
3.5.1. Moisture Content
3.5.2. Basic Density
3.5.3. Radial Shrinkage
3.5.4. Tangential Shrinkage
3.6. Bamboo Fibres Thermal Properties
3.6.1. Injibara Bamboo Fibres
3.6.2. Kombolcha Bamboo Fibres
3.6.3. Mekaneselam Bamboo Fibres
3.7. Degree of Crystallinity
3.7.1. Injibara Bamboo Fibres
3.7.2. Kombolcha Bamboo Fibres
3.7.3. Mekaneselam Bamboo Fibre
3.8. Measurement of Tensile Strength of Single Bamboo Fibres
4. Conclusions
- Age, harvesting season, and culm height have a significant effect on the MC, BDs, and culm shrinkages which have influenced the construction, structure, and composite development;
- One-year-old bamboo culm has higher MC and culm shrinkage compared to three-years-old culm due to immature cell development at the early stage, but three-year-old culm has a higher BD and lower MC so it is used for structural and construction applications;
- The harvesting season of November yields a higher MC, which can easily extract bamboo fibres without damage for composite development;
- Two-year-old bamboo fibres have the highest percentage of the degree of crystallinity, which indicates more powder crystal and thus a high strength that resists chemical deterioration.
- Cellulose has a higher decomposition temperature compared to hemicelluloses but it has a lower decomposition temperature compared to lignin;
- Age and bamboo species have a significant effect on the degree of crystallinity and decomposition temperature for composite development;
- Two-year-old bamboo fibres have the highest thermal decomposition temperature of celluloses which indicates more powder crystals and thus that it has a high strength and resists chemical deterioration;
- The current research results finding show that the thermal degradation temperature of the cellulose is above 310 °C which is the highest value for the consolidation temperature of thermoplastics used for polymer composite development;
- Inj. and Meka. bamboo fibres (Y. alpina) have a potential for composite development due to their higher degree of crystallinity and thermal degradation temperature compared to Kocha. bamboo fibres (B. oldhamii).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banik, R.L. Morphology and Growth. In Tropical Forestry; Liese, W., Köhl, M., Eds.; Springer: Cham, Switzerland, 2015; Volume 10. [Google Scholar] [CrossRef]
- Alabi, B.; Fapohunda, J. Effects of Increase in the Cost of Building Materials on the Delivery of Affordable Housing in South Africa. Sustainability 2021, 13, 1772. [Google Scholar] [CrossRef]
- Javadian, A.; Smith, I.F.C.; Saeidi, N.; Hebel, D.E. Mechanical properties of bamboo through measurement of culm physical properties for composite fabrication of structural concrete reinforcement. Front. Mater. 2019, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Kindu, M.; Universit, T. Status of bamboo resource development, utilization, and research in Ethiopia: A review. Ethiop. J. Nat. Resour. 2016, 1, 79–98. [Google Scholar]
- Kebede, A.A. Opportunities and Challenges to Highland Bamboo-Based Traditional Handicraft Production, Marketing and Utilization in Awi Zone, Northwestern Ethiopia. Int. J. Hist. Cult. Stud. 2018, 4, 57–67. [Google Scholar] [CrossRef]
- Seyoum, G.; Lemma, T.; Yigardu, M. Indigenous knowledge on highland bamboo (Yushania alpina) management and utilization practices in Kokosa Woreda, South East Ethiopia. Sci. Res. Essays 2018, 13, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Paudel, S. Development and Promotion of Bamboo Housing Technology in East Africa. 2011. Available online: http://idl-bnc.idrc.ca/dspace/bitstream/10625/48258/1/IDL-48258.pdf (accessed on 12 July 2023).
- Ekhuemelo, D.O.; Tembe, E.T.; Ugwueze, F.A. Bamboo: A potential alternative to wood and wood products. S. Asian J. Biol. Res. 2018, 1, 9–24. [Google Scholar]
- Plant, T. Properties of the Bamboo Culm. In Tropical Forestry; Liese, W., Köhl, M., Eds.; Springer: Cham, Switzerland, 2015; Volume 10. [Google Scholar] [CrossRef]
- Girma, Y.G.; Assefa, D. Effect of Age and Height on Some Selected Physical Properties of Ethiopian Highland Bamboo (Yushania Alpina). Int. J. Sci. Res. Manag. 2018, 6, 70–74. [Google Scholar] [CrossRef]
- Jin, Q.; Zhang, W.; Yao, W.; Richmond, T.; Lods, L.; Qiu, C.; Li, F. Utilization of Bamboo Fiber in the Development of Environmentally Friendly Composite—A Review. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1096, 012038. [Google Scholar] [CrossRef]
- Falayi, F.R.; Soyoye, B.O.; Tehinse, T.O. The Influence of Age and Location on Selected Physical and Mechanical Properties of Bamboo (Phyllostachys Pubesces). Int. J. Res. Agric. For. 2014, 1, 44–54. [Google Scholar]
- Huang, X.; Xie, J.; Qi, J.; De Hoop, C.F.; Xiao, H.; Chen, Y.; Li, F. Differences in physical—Mechanical properties of bamboo scrimbers with response to bamboo maturing process. Eur. J. Wood Wood Prod. 2018, 76, 1137–1143. [Google Scholar] [CrossRef]
- Wang, H.; Li, W.; Ren, D.; Yu, Z.; Yu, Y. A two-variable model for predicting the effects of moisture content and density on compressive strength parallel to the grain for moso bamboo. J. Wood Sci. 2014, 60, 362–366. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, Q.; Sun, W.; Zhao, Y.; Wang, X.; Liu, X.; Li, Y. Bamboo flattening technique: A literature and patent review. Eur. J. Wood Wood Prod. 2021, 79, 1035–1048. [Google Scholar] [CrossRef]
- Yuan, T.; Han, X.; Wu, Y.; Hu, S.; Wang, X.; Li, Y. A new approach for fabricating crack-free, flattened bamboo board and the study of its macro-/micro-properties. Eur. J. Wood Wood Prod. 2021, 79, 1531–1540. [Google Scholar] [CrossRef]
- Malekzadeh, H.; Md Zaid, N.S.B.; Bele, E. Characterization and structural properties of bamboo fibre solid foams. Cellulose 2021, 28, 703–714. [Google Scholar] [CrossRef]
- Shiferaw, A. Estimating Soil Loss Rates For Soil Conservation Planning in Borena Woreda Of South Wollo Highlands of Ethiopia: The Case from the Legemara Watershed. Ethiop. J. Bus. Econ. 2012, 2, 1–34. [Google Scholar]
- Birara, H.; Pandey, R.P.; Mishra, S.K. Trend and variability analysis of rainfall and temperature in the tana basin region, Ethiopia. J. Water Clim. Chang. 2018, 9, 555–569. [Google Scholar] [CrossRef] [Green Version]
- Rosell, S.; Holmer, B. Rainfall change and its implications for Belg harvest in South Wollo, Ethiopia. Geogr. Ann. Ser. A Phys. Geogr. 2007, 89A, 287–299. [Google Scholar] [CrossRef] [Green Version]
- ASTM D5229; Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM D2395:14; Standard Test Methods for Density and Specific Gravity (Relative Density) of Wood and Wood-Based Materials. ASTM International: West Conshohocken, PA, USA, 2014. [CrossRef]
- ASTM C356; Standard Test Method for Linear Shrinkage of Preformed High-Temperature Thermal Insulation Subjected to Soaking Heat. ASTM International: West Conshohocken, PA, USA, 1997.
- ASTM C1557; Standard Test Method for Tensile Strength and Young’s Modulus of Fibers. American Society for Testing and Materials: West Conshohocken, PA, USA, 2008.
- Kamruzzaman, S.M.; Saha, S.K.; Bose, A.K.; Islam, M.N. Effects of Age and Height on Physical and Mechanical Properties of Bamboo. J. Trop. For. Sci. 2018, 20, 211–217. [Google Scholar]
- Selvan, R.T.; Parthiban, K.T.; Khanna, S.U. Physio-Chemical Properties of Bamboo Genetic Resources at Various Age Gradations. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1671–1681. [Google Scholar] [CrossRef] [Green Version]
- Mohmod, A.L.; Amin, A.H.; Kasim, J.; Jusuh, M.Z. Effects of Anatomical Characteristics on the Physical and Mechanical Properties of Bambusa Blumeana. J. Trop. For. Sci. 1993, 6, 159–170. [Google Scholar]
- Mohmod, A.L.; Tarmeze, W.A.; Ahmad, F. Anatomical features and mechanical properties of three Malaysian bamboos. J. Trop. For. Sci. 1990, 2, 227–234. [Google Scholar]
- Wang, X.Q.; Li, X.Z.; Ren, H.Q. Variation of microfibril angle and density in moso bamboo (Phyllostachys pubescens). J. Trop. For. Sci. 2010, 22, 88–96. [Google Scholar]
- Anwar, U.M.K.; Zaidon, A.; Hamdan, H.; Tamizi, M.M. Physical and Mechanical Properties of Gigantochloa Scortechinii Bamboo Splits and Strips. J. Trop. For. Sci. 2019, 17, 1–12. [Google Scholar]
- Wei, J.; Du, C.; Liu, H.; Chen, Y.; Yu, H.; Zhou, Z. Preparation and Characterization of Aldehyde-Functionalized Cellulosic Fibers through Periodate Oxidization of Bamboo Pulp. BioResources 2016, 11, 8386–8395. [Google Scholar] [CrossRef]
- Júnior, A.E.C.; Barreto, A.C.H.; Rosa, D.S.; Maia, F.J.N.; Lomonaco, D.; Mazzetto, S.E. Thermal and mechanical properties of biocomposites based on a cashew nut shell liquid matrix reinforced with bamboo fibers. J. Compos. Mater. 2015, 49, 2203–2215. [Google Scholar] [CrossRef]
- Shah, A.U.M.; Sultan, M.T.H.; Cardona, F.; Jawaid, M.; Talib, A.R.A.; Yidris, N. Thermal analysis of bamboo fibre and its composites. BioResources 2017, 12, 2394–2406. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Wang, F.; Liang, W.; Wang, Z.; Duan, Z.; Yang, B. Thermal and mechanical properties of bamboo fiber reinforced epoxy composites. Polymers 2018, 8, 608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishiyama, Y.; Sugiyama, J.; Chanzy, H.; Langan, P. Crystal Structure and Hydrogen Bonding System in Cellulose Iα from Synchrotron X-ray and Neutron Fiber Diffraction. J. Am. Chem. Soc. 2003, 125, 14300–14306. [Google Scholar] [CrossRef]
- Chen, J.H.; Wang, K.; Xu, F.; Sun, R.C. Effect of hemicellulose removal on the structural and mechanical properties of regenerated fibers from bamboo. Cellulose 2015, 22, 63–72. [Google Scholar] [CrossRef]
Name of Testing Sites | Testing Regions | Ave. Value of Climate | |||||
---|---|---|---|---|---|---|---|
Zone | Region | Lat-Long | Alt. (m) | An.RF (mm) | Maximum Temp. (°C) | Minimum Temp. (°C) | |
Inj. | Awi | Amahara | 10°59′ N 36°55′ E | 2540–2865 | 1813 | 24 | 14 |
Kocha. | S/wollo | Amahara | 11°5′ N 39°44′ E | 1842–1915 | 1027 | 26 | 20 |
Meka. | S/wollo | Amahara | 10°45′ N 38°45′ E | 2605–3000 | 1048 | 21 | 10 |
Bamboo Species | Age (Years) | Basic Density (Kg/m3) |
---|---|---|
Bambusa vulgaris var. vulgaris | 1 | 411 |
2 | 426 | |
3 | 442 | |
Bambusa vulgaris var. striata | 1 | 390 |
2 | 410 | |
3 | 435 | |
Bambusa balcoola | 1 | 428 |
2 | 442 | |
3 | 466 | |
Bambusa tulda | 1 | 431 |
2 | 447 | |
3 | 468 | |
Bambusa polymorpha | 1 | 417 |
2 | 428 | |
3 | 442 | |
Dendro calamus strictus | 1 | 432 |
2 | 449 | |
3 | 458 | |
Bambusa bambos | 1 | 422 |
2 | 439 | |
3 | 451 | |
Yushania alpina | 1 | 600 |
2 | 653 | |
3 | 667 | |
Bambusa blumeana | 1 | 1103 |
2 | 1037 | |
3 | 1000 | |
Bambusa vulgaris var. | 1 | 293 |
2 | 507 | |
3 | 543 | |
Gigantochlo scoretechinii | 1 | 470 |
2 | 533 | |
3 | 557 |
Factors | Inj. | Kocha. | Meka. | |||
---|---|---|---|---|---|---|
p-Value | p < 0.05 | p-Value | Sign. (p < 0.05) | p-Value | p < 0.05 | |
Age | 0.0000 | Yes | 0.0000 | Yes | 0.0000 | Yes |
CH | 0.0000 | Yes | 0.0000 | Yes | 0.0000 | Yes |
HM | 0.0002 | Yes | 0.2738 | No | 0.0000 | Yes |
Factors | Inj. | Kocha. | Meka. | |||
---|---|---|---|---|---|---|
p-Value | p < 0.05 | p-Value | p < 0.05 | p-Value | p < 0.05 | |
Age | 0.0000 | Yes | 0.0000 | Yes | 0.0000 | Yes |
CH | 0.0000 | Yes | 0.0000 | Yes | 0.1968 | No |
HM | 0.0000 | Yes | 0.9239 | No | 0.0000 | Yes |
Factors | Inj. | Kocha. | Meka. | |||
---|---|---|---|---|---|---|
p-Value | p < 0.05 | p-Value | p < 0.05 | p-Value | p < 0.05 | |
Age | 0.0000 | Yes | 0.0000 | Yes | 0.0000 | Yes |
CH | 0.0000 | Yes | 0.0000 | Yes | 0.0000 | Yes |
HM | 0.0029 | Yes | 0.0286 | No | 0.0000 | Yes |
Factors | Inj. | Kocha. | Meka. | |||
---|---|---|---|---|---|---|
p-Value | p < 0.05 | p-Value | p < 0.05 | p-Value | p < 0.05 | |
Age | 0.0000 | Yes | 0.0000 | Yes | 0.0000 | Yes |
CH | 0.0000 | Yes | 0.0000 | Yes | 0.0000 | Yes |
HM | 0.0000 | Yes | 0.0022 | Yes | 0.0000 | Yes |
Bamboo Species | GL (mm) | Emax. (GPa) | Ecor. (GPa) | UTS (MPa) | εmax. (%) | εcor. (%) |
---|---|---|---|---|---|---|
Inj. | 15 | 50 ± 5 | 52 ± 5 | 600 ± 80 | 1.31 ± 0.11 | 1.24 ± 0.11 |
25 | 43 ± 4 | 45 ± 3 | 580 ± 70 | 1.45 ± 0.13 | 1.54 ± 0.13 | |
30 | 35 ± 4 | 37 ± 3 | 553 ± 60 | 1.69 ± 0.14 | 1.45 ± 0.12 | |
40 | 29 ± 3 | 31 ± 3 | 542 ± 55 | 1.6 ± 0.13 | 1.53 ± 0.13 | |
50 | 26 ± 3 | 29 ± 3 | 432 ± 45 | 2.09 ± 0.18 | 1.56 ± 0.12 | |
Kocha. | 15 | 41 ± 5 | 43 ± 5 | 508 ± 50 | 1.09 ± 0.09 | 1.05 ± 0.08 |
25 | 34 ± 3 | 36 ± 4 | 470 ± 45 | 1.18 ± 0.08 | 1.1 ± 0.06 | |
30 | 29 ± 3 | 31 ± 3 | 385 ± 40 | 1.16 ± 0.09 | 1.12 ± 0.09 | |
40 | 27 ± 3 | 28 ± 3 | 378 ± 35 | 1.52 ± 0.13 | 1.45 ± 0.12 | |
50 | 20 ± 2 | 22 ± 2 | 370 ± 35 | 2.18 ± 0.19 | 1.57 ± 0.13 | |
Meka. | 15 | 46 ± 5 | 48 ± 6 | 566 ± 60 | 1.15 ± 0.11 | 1.07 ± 0.09 |
25 | 41 ± 4 | 43 ± 5 | 528 ± 55 | 1.43 ± 0.12 | 1.34 ± 0.11 | |
30 | 40 ± 4 | 42 ± 4 | 515 ± 50 | 1.57 ± 0.13 | 1.45 ± 0.12 | |
40 | 26 ± 3 | 28 ± 3 | 452 ± 45 | 1.71 ± 0.13 | 1.59 ± 0.13 | |
50 | 24 ± 2 | 26 ± 2 | 448 ± 40 | 2.08 ± 0.17 | 1.78 ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, B.; Dessalegn, Y.; Wakjira, M.W.; Girma, C.; Rajhi, A.A.; Duhduh, A.A. Characterization of Bamboo Culm as Potential Fibre for Composite Development. Materials 2023, 16, 5196. https://doi.org/10.3390/ma16145196
Singh B, Dessalegn Y, Wakjira MW, Girma C, Rajhi AA, Duhduh AA. Characterization of Bamboo Culm as Potential Fibre for Composite Development. Materials. 2023; 16(14):5196. https://doi.org/10.3390/ma16145196
Chicago/Turabian StyleSingh, Balkeshwar, Yalew Dessalegn, Melesse Workneh Wakjira, Cherinet Girma, Ali A. Rajhi, and Alaauldeen A. Duhduh. 2023. "Characterization of Bamboo Culm as Potential Fibre for Composite Development" Materials 16, no. 14: 5196. https://doi.org/10.3390/ma16145196
APA StyleSingh, B., Dessalegn, Y., Wakjira, M. W., Girma, C., Rajhi, A. A., & Duhduh, A. A. (2023). Characterization of Bamboo Culm as Potential Fibre for Composite Development. Materials, 16(14), 5196. https://doi.org/10.3390/ma16145196