Ohmic Contact to n-GaN Using RT-Sputtered GaN:O
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meneghini, M.; De Santi, C.; Abid, I.; Buffolo, M.; Cioni, M.; Khadar, R.A.; Nela, L.; Zagni, N.; Chini, A.; Medjdoub, F.; et al. GaN-based power devices: Physics, reliability and perspectives. J. Appl. Phys. 2021, 130, 181101. [Google Scholar] [CrossRef]
- Whiting, P.G.; Rudawski, N.G.; Holzworth, M.R.; Pearton, S.J.; Jones, K.S.; Liu, L.; Kang, T.S.; Ren, F. Nanocrack formation in AlGaN/GaN high electron mobility transistors utilizing Ti/Al/Ni/Au ohmic contacts. Microelectron. Reliab. 2017, 70, 41–48. [Google Scholar] [CrossRef]
- Guo, J.; Cao, Y.; Lian, C.; Zimmermann, T.; Li, G.; Verma, J.; Gao, X.; Guo, S.; Saunier, P.; Wistey, M.; et al. Metal-face InAlN/AlN/GaN high electron mobility transistors with regrown ohmic contacts by molecular beam epitaxy. Phys. Status Solidi A 2011, 208, 1617–1619. [Google Scholar] [CrossRef]
- Greco, G.; Iucolano, F.; Roccaforte, F. Ohmic contacts to Gallium Nitride materials. Appl. Surf. Sci. 2016, 383, 324–345. [Google Scholar] [CrossRef]
- Mohammad, S.N. Contact mechanism and design principles for alloyed ohmic contacts to n-GaN. J. Appl. Phys. 2004, 95, 7940–7953. [Google Scholar] [CrossRef]
- Iucolano, F.; Roccaforte, F.; Alberti, A.; Bongiorno, C.; Di Franco, S.; Raineri, V. Temperature dependence of the specific resistance in Ti/Al/Ni/Au contacts on n-type GaN. J. Appl. Phys. 2006, 100, 123706. [Google Scholar] [CrossRef]
- Upadhyay, P.; Meer, M.; Takhar, K.; Khachariya, D.; Kumar, S.A.; Banerjee, D.; Ganguly, S.; Laha, A.; Saha, D. Improved Ohmic contact to GaN and AlGaN/GaN two-dimensional electron gas using trap assisted tunneling by B implantation. Phys. Status Solidi B 2015, 252, 989–995. [Google Scholar] [CrossRef]
- Nomoto, K.; Toyoda, Y.; Satoh, M.; Inada, T.; Nakamura, T. Characterization of silicon ion-implanted GaN and AlGaN. Nucl. Instrum. Methods Phys. Res. B 2012, 272, 125–127. [Google Scholar] [CrossRef]
- Wojtasiak, W.; Góralczyk, M.; Gryglewski, D.; Zajac, M.; Kucharski, R.; Prystawko, P.; Piotrowska, A.; Ekielski, M.; Kaminska, E.; Taube, A.; et al. AlGaN/GaN High Electron Mobility Transistors on Semi-Insulating Ammono-GaN Substrates with Regrown Ohmic Contacts. Micromachines 2018, 9, 546. [Google Scholar] [CrossRef]
- Guo, J.; Li, J.G.; Faria, F.; Cao, Y.; Wang, R.; Verma, J.; Gao, X.; Guo, S.; Beam, E.; Ketterson, A.; et al. MBE-regrown ohmics in InAlN HEMTs with a regrowth interface resistance of 0.05 Ω·mm. IEEE Electron. Device Lett. 2012, 33, 525–527. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, M.D.; He, Y.L.; Zheng, X.F.; Wei, X.X.; Mao, W.; Zhang, J.; Hao, Y. Optimization of ohmic contact for AlGaN/GaN HEMT by introducing patterned etching in ohmic area. Solid State Electron. 2017, 129, 114–119. [Google Scholar] [CrossRef]
- Pampili, P.; Parbrook, P.J. Doping of III-nitride materials. Mater. Sci. Semicond. Process. 2017, 62, 180–191. [Google Scholar] [CrossRef]
- Watson, I.M. Metal organic vapour phase epitaxy of AlN, GaN, InN and their alloys: A key chemical technology for advanced device applications. Coord. Chem. Rev. 2013, 257, 2120–2141. [Google Scholar] [CrossRef]
- Ueno, K.; Arakawa, Y.; Kobayashi, A.; Ohta, J.; Fujioka, H. Highly conductive Ge-doped GaN epitaxial layers prepared by pulsed sputtering. Appl. Phys. Express. 2017, 10, 101002. [Google Scholar] [CrossRef]
- Yi, G.C.; Wessels, B.W. Compensation of n-type GaN. Appl. Phys. Lett. 1996, 69, 3028–3030. [Google Scholar] [CrossRef]
- Kirste, R.; Hoffmann, M.P.; Sachet, E.; Bobea, M.; Bryan, Z.; Bryan, I.; Nenstiel, C.; Hoffmann, A.; Maria, J.-P.; Collazo, R.; et al. Ge doped GaN with controllable high carrier concentration for plasmonic applications. Appl. Phys. Lett. 2013, 103, 242107. [Google Scholar] [CrossRef]
- Junaid, M.; Lundin, D.; Palisaitis, J.; Hsiao, C.-L.; Darakchieva, V.; Jensen, J.; Persson, P.O.A.; Sandstrom, P.; Lai, W.-J.; Chen, L.-C.; et al. Two-domain formation during the epitaxial growth of GaN(0001) on c-plane Al2O3(0001) by high power impulse magnetron sputtering. J. Appl. Phys. 2011, 110, 123519. [Google Scholar] [CrossRef]
- Arakawa, Y.; Ueno, K.; Imabeppu, H.; Kobayashi, A.; Ohta, J.; Fujioka, H. Electrical properties of Si-doped GaN prepared using pulsed sputtering. Appl. Phys. Lett. 2017, 110, 042103. [Google Scholar] [CrossRef]
- Shinoda, H.; Mutsukura, N. Structural properties of GaN layers grown on Al2O3 (0001) and GaN/Al2O3 template by reactive radio-frequency magnetron sputter epitaxy. Vacuum 2016, 125, 133–140. [Google Scholar] [CrossRef]
- Junaid, M.; Hsiao, C.-L.; Palisaitis, J.; Jensen, J.; Persson, P.O.Å.; Hultman, L.; Birch, J. Electronic-grade GaN(0001)/Al2O3(0001) grown by reactive DC-magnetron sputter epitaxy using a liquid Ga target. Appl. Phys. Lett. 2011, 98, 141915. [Google Scholar] [CrossRef]
- Polyakov, A.Y.; Lee, I.-H. Deep traps in GaN-based structures as affecting the performance of GaN devices. Mater. Sci. Eng. R Rep. 2015, 94, 1–56. [Google Scholar] [CrossRef]
- Lund, C.; Nakamura, S.; DenBaars, S.P.; Mishra, U.K.; Keller, S. Growth of high purity N-polar (In,Ga)N films. J. Cryst. Growth 2017, 464, 127–131. [Google Scholar] [CrossRef]
- Sintonen, S.; Kivisaari, P.; Pimputkar, S.; Suihkonen, S.; Schulz, T.; Speck, J.S.; Nakamura, S. Incorporation and effects of impurities in different growth zones within basic ammonothermal GaN. J. Cryst. Growth 2016, 456, 43–50. [Google Scholar] [CrossRef]
- Zajac, M.; Kucharski, R.; Grabianska, K.; Gwardys-Bak, A.; Puchalski, A.; Wasik, D.; Litwin-Staszewska, E.; Piotrzkowski, R.; Domagala, J.Z.; Bockowski, M. Basic ammonothermal growth of Gallium Nitride—State of the art, challenges, perspectives. Prog. Cryst. Growth Charact. Mater. 2018, 64, 63–74. [Google Scholar] [CrossRef]
- Yin, M.L.; Zou, C.W.; Li, M.; Liu, C.S.; Guo, L.P.; Fu, D.J. Middle-frequency magnetron sputtering for GaN growth. Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. At. 2007, 262, 189–193. [Google Scholar] [CrossRef]
- Akazawa, H. Target-quality dependent crystallinity of sputter-deposited LiNbO3 films: Observation of impurity segregation. Thin Solid Films 2009, 517, 5786–5792. [Google Scholar] [CrossRef]
- Kikuma, T.; Tominaga, K.; Furutani, K.; Kusaka, K.; Hanabusa, T.; Mukai, T. GaN films deposited by planar magnetron sputtering. Vacuum 2002, 66, 233–237. [Google Scholar] [CrossRef]
- Junaid, M.; Sandström, P.; Palisaitis, J.; Darakchieva, V.; Hsiao, C.-L.; Persson, P.O.Å.; Hultman, L.; Birch, J. Stress evolution during growth of GaN(0001)/Al2O3(0001) by reactive dc magnetron sputter epitaxy. J. Phys. D Appl. Phys. 2014, 47, 145301. [Google Scholar] [CrossRef]
- Masłyk, M.; Borysiewicz, M.A.; Wzorek, M.; Wojciechowski, T.; Kwoka, M.; Kaminska, E. Influence of absolute argon and oxygen flow values at a constant ratio on the growth of Zn/ZnO nanostructures obtained by DC reactive magnetron sputtering. Appl. Surf. Sci. 2016, 389, 287–293. [Google Scholar] [CrossRef]
- Qian, D. Plasma edge and its application to infrared measurement and detection. J. Appl. Phys. 1993, 74, 3061–3064. [Google Scholar] [CrossRef]
- Charache, G.W.; DePoy, D.M.; Raynolds, J.E.; Baldasaro, P.F.; Miyano, K.E.; Holden, T.; Pollak, F.H.; Sharps, P.R.; Timmons, M.L.; Geller, C.B.; et al. Moss–Burstein and plasma reflection characteristics of heavily doped n-type InxGa1−xAs and InPyAs1−y. J. Appl. Phys. 1999, 86, 452–458. [Google Scholar] [CrossRef]
- Giehler, M.; Ramsteiner, M.; Brandt, O.; Yang, H.; Ploog, K.H. Optical phonons of hexagonal and cubic GaN studied by infrared transmission and Raman spectroscopy. Appl. Phys. Lett. 1995, 67, 733–735. [Google Scholar] [CrossRef]
- Hsueh, K.-P.; Chiang, K.-C.; Hsin, Y.-M.; Wang, C.-J. Investigation of Cr- and Al-based metals for the reflector and Ohmic contact on n-GaN in GaN flip-chip light-emitting diodes. Appl. Phys. Lett. 2006, 89, 191122. [Google Scholar] [CrossRef]
- Lee, M.-L.; Sheu, J.-K.; Hu, C.C. Nonalloyed Cr⁄Au-based Ohmic contacts to n-GaN. Appl. Phys. Lett. 2007, 91, 182106. [Google Scholar] [CrossRef]
- Schroder, D.K. Semiconductor Material and Device Characterization, 3rd ed.; Wiley & Sons Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maslyk, M.; Prystawko, P.; Kaminska, E.; Grzanka, E.; Krysko, M. Ohmic Contact to n-GaN Using RT-Sputtered GaN:O. Materials 2023, 16, 5574. https://doi.org/10.3390/ma16165574
Maslyk M, Prystawko P, Kaminska E, Grzanka E, Krysko M. Ohmic Contact to n-GaN Using RT-Sputtered GaN:O. Materials. 2023; 16(16):5574. https://doi.org/10.3390/ma16165574
Chicago/Turabian StyleMaslyk, Monika, Pawel Prystawko, Eliana Kaminska, Ewa Grzanka, and Marcin Krysko. 2023. "Ohmic Contact to n-GaN Using RT-Sputtered GaN:O" Materials 16, no. 16: 5574. https://doi.org/10.3390/ma16165574
APA StyleMaslyk, M., Prystawko, P., Kaminska, E., Grzanka, E., & Krysko, M. (2023). Ohmic Contact to n-GaN Using RT-Sputtered GaN:O. Materials, 16(16), 5574. https://doi.org/10.3390/ma16165574