Recent Progress in Photonic Upconversion Materials for Organic Lanthanide Complexes
Abstract
:1. Introduction
2. The Basic Concept of Organic Lanthanide-Based UC
2.1. Sensitizer
2.2. Activator
2.3. The Mechanisms of Upconversion Luminescence
3. Organic Lanthanide-Based UC Materials
3.1. Upconversion Based on the ESA Mechanism
3.2. Upconversion Based on the ETU Mechanism
3.3. Upconversion Based on the CU Mechanism
3.4. Upconversion Based on the CL Mechanism
Complex | λex (nm) | λem (nm) | p (W·cm−2) | ϕup | τ (μs) | Ref. |
---|---|---|---|---|---|---|
[Er(L1)3]3− | 986 | 542 | 109 | / | / | [33] |
[Er(L2)F] | 980 | 520–650 | 10 | / | / | [22] |
[Er(L1-NEt2)3]3+ | 801 | 522–542 | 25 | 1.9 × 10−10 | 3.07 | [23] |
[Er(Et-L3)3]3+ | 801 | 522–542 | 25 | 5.5 × 10−11 | 1.88 | [24] |
[Er(Et-L4)3]3+ | 801 | 522–542 | 25 | 1.7 × 10−9 | 5.56 | [24] |
[Ga2Er(dipy-L4)3]9+ | 801 | 522–542 | 25 | 1.7 × 10−9 | Er: 4.03 | [25] |
[CrEr(py-L4)3]6+ | 718 | 522–542 | 38.2 | 5.3 × 10−8 | Er: 4.6 | [21] |
[CrErCr(dipy-L4)3]9+ | 718 | 522–542 | 38.2 | 5.8 × 10−8 | Er: 3.6 | [20] |
[(IR-806-L4)Er(L7)3]+ | 801 | 522–542 | 1.4 | 1.9 × 10−10 | / | [37] |
[ErL6] | 514 | 450 | / | / | / | [42] |
[Yb2Er]+ | 980 | 545–655 | 2 | 0.0182 | Er: 94.4 | [45] |
[polyEr(L7)4(L8)2-Yb(L8)4 | 980 | 543–808 | 5 | / | Er: 123 | [46] |
{[Yb(L9)]2Tb} | 980 | 485–680 | 10.3 | 1.4 × 10−8 | / | [48] |
{[Yb(L10)]2Tb} | 980 | 480–650 | 2.86 | 1.4 × 10−8 | Tb: 1.46 × 103 | [43] |
[Yb8Tb(L11)16(OH)10]+ | 980 | 480–650 | 2.86 | 1.0 × 10−7 | Tb: 1.12 × 103 | [49] |
[Yb(L1)3][Cr(L12)2] | 976 | 780 | 67 | / | Cr: 380 | [50] |
[Yb(L13)(L5)3] | 980 | 490 | / | / | 15.7 | [52] |
[TbL15L16L17(NO3)3] | 845 | 450–700 | / | / | / | [34] |
[EuL15L16L17(NO3)3] | 845 | 600–730 | / | / | / | [34] |
4. Applications
4.1. Bioimaging Application
4.2. Solar Cell Application
5. Summary and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Yan, L.; Huang, J.; Zhang, Q.; Zhou, B. Controlling upconversion in emerging multilayer core–shell nanostructures: From fundamentals to frontier applications. Chem. Soc. Rev. 2022, 51, 1729–1765. [Google Scholar] [CrossRef]
- Zheng, X.; Kankala, R.K.; Liu, C.-G.; Wang, S.-B.; Chen, A.-Z.; Zhang, Y. Lanthanides-doped near-infrared active upconversion nanocrystals: Upconversion mechanisms and synthesis. Coord. Chem. Rev. 2021, 438, 213870–213887. [Google Scholar] [CrossRef]
- Healy, C.; Hermanspahn, L.; Kruger, P.E. Photon upconversion in self-assembled materials. Coord. Chem. Rev. 2021, 432, 213756–213768. [Google Scholar] [CrossRef]
- Kwon, O.S.; Song, H.S.; Conde, J.; Kim, H.-i.; Artzi, N.; Kim, J.-H. Dual-color emissive upconversion nanocapsules for differential cancer bioimaging In vivo. ACS Nano 2016, 10, 1512–1521. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Le, T.; Huang, K.; Han, G. Enzymatic enhancing of triplet–triplet annihilation upconversion by breaking oxygen quenching for background-free biological sensing. Nat. Commun. 2021, 12, 1898–1907. [Google Scholar] [CrossRef]
- Zhu, X.; Su, Q.; Feng, W.; Li, F. Anti-stokes shift luminescent materials for bio-applications. Chem. Soc. Rev. 2017, 46, 1025–1039. [Google Scholar] [CrossRef]
- Schulze, T.F.; Schmidt, T.W. Photochemical upconversion: Present status and prospects for its application to solar energy conversion. Energy Environ. Sci. 2015, 8, 103–125. [Google Scholar] [CrossRef]
- Tu, L.; Xie, Y.; Li, Z.; Tang, B. Aggregation-induced emission: Red and near-infrared organic light-emitting diodes. SmartMat 2021, 2, 326–346. [Google Scholar] [CrossRef]
- Ravetz, B.D.; Pun, A.B.; Churchill, E.M.; Congreve, D.N.; Rovis, T.; Campos, L.M. Photoredox catalysis using infrared light via triplet fusion upconversion. Nature 2019, 570, 343–346. [Google Scholar] [CrossRef]
- Nehra, K.; Dalal, A.; Hooda, A.; Bhagwan, S.; Saini, R.K.; Mari, B.; Kumar, S.; Singh, D. Lanthanides β-diketonate complexes as energy-efficient emissive materials: A review. J. Mol. Struct. 2022, 1249, 131531–131555. [Google Scholar] [CrossRef]
- Someya, T.; Bao, Z.; Malliaras, G.G. The rise of plastic bioelectronics. Nature 2016, 540, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Li, Z.; Li, Q.; Yuan, J.; Tu, L.; Ning, L.; Zhang, H. Internal OH − induced cascade quenching of upconversion luminescence in NaYF4:Yb/Er nanocrystals. Sci. Appl. 2021, 10, 105. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Cui, S.; Fang, L.; Lin, Z.; Lu, C.; Yang, X. NIR-I-responsive single-band upconversion emission through energy migration in core–shell–shell nanostructures. Angew. Chem. Int. Edit. 2022, 61, 202113114. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Tang, B.; Zhang, C.; Qin, C.; Gu, Z.; Ma, Y.; Zhai, T.; Yao, J. Enhancing multiphoton upconversion through interfacial energy transfer in multilayered nanoparticles. Nat. Commun. 2020, 11, 1174–1183. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, X.; Ohulchanskyy, T.Y.; Chen, G. Lanthanide-doped near-infrared nanoparticles for biophotonics. Adv. Mater. 2021, 33, 2000678. [Google Scholar] [CrossRef]
- Mohanty, S.; Kaczmarek, A.M. Unravelling the benefits of transition-metal-co-doping in lanthanide upconversion nanoparticles. Chem. Soc. Rev. 2022, 51, 6893–6908. [Google Scholar] [CrossRef]
- Wang, X.; Valiev, R.R.; Ohulchanskyy, T.Y.; Ågren, H.; Yang, C.; Chen, G. Dye-sensitized lanthanide-doped upconversion nanoparticles. Chem. Soc. Rev. 2017, 46, 4150–4167. [Google Scholar] [CrossRef]
- Hyppänen, I.; Lahtinen, S.; Ääritalo, T.; Mäkelä, J.; Kankare, J.; Soukka, T. Photon upconversion in a molecular lanthanide complex in anhydrous solution at room temperature. ACS Photonics 2014, 1, 394–397. [Google Scholar] [CrossRef]
- Knighton, R.C.; Soro, L.K.; Francés-Soriano, L.; Rodríguez-Rodríguez, A.; Pilet, G.; Lenertz, M.; Platas-Iglesias, C.; Hildebrandt, N.; Charbonnière, L.J. Cooperative luminescence and cooperative sensitisation upconversion of lanthanide complexes in solution. Angew. Chem. Int. Edit. 2022, 61, e202113114. [Google Scholar] [CrossRef]
- Aboshyan-Sorgho, L.; Besnard, C.; Pattison, P.; Kittilstved, K.R.; Aebischer, A.; Bünzli, J.-C.G.; Hauser, A.; Piguet, C. Near-infrared→visible light upconversion in a molecular trinuclear d–f–d complex. Angew. Chem. Int. Edit. 2011, 50, 4108–4112. [Google Scholar] [CrossRef]
- Golesorkhi, B.; Taarit, I.; Bolvin, H.; Nozary, H.; Jiménez, J.-R.; Besnard, C.; Guénée, L.; Fürstenberg, A.; Piguet, C. Molecular light-upconversion: We have had a problem! hen excited state absorption (ESA) overcomes energy transfer upconversion (ETU) in Cr(Ⅲ)/Er(Ⅲ) complexes. Dalton Trans. 2021, 50, 7955–7968. [Google Scholar] [CrossRef] [PubMed]
- Nonat, A.; Chan, C.F.; Liu, T.; Platas-Iglesias, C.; Liu, Z.; Wong, W.-T.; Wong, W.-K.; Wong, K.-L.; Charbonnière, L.J. Room temperature molecular up conversion in solution. Nat. Commun. 2016, 7, 11978–11986. [Google Scholar] [CrossRef] [PubMed]
- Golesorkhi, B.; Guénée, L.; Nozary, H.; Fürstenberg, A.; Suffren, Y.; Eliseeva, S.V.; Petoud, S.; Hauser, A.; Piguet, C. Thermodynamic programming of erbium(III) coordination complexes for dual visible/near-infrared luminescence. Chem. Eur. J. 2018, 24, 13158–13169. [Google Scholar] [CrossRef] [PubMed]
- Golesorkhi, B.; Nozary, H.; Guénée, L.; Fürstenberg, A.; Piguet, C. Room-temperature linear light upconversion in a mononuclear erbium molecular complex. Angew. Chem. Int. Edit. 2018, 57, 15172–15176. [Google Scholar] [CrossRef]
- Golesorkhi, B.; Fürstenberg, A.; Nozary, H.; Piguet, C. Deciphering and quantifying linear light upconversion in molecular erbium complexes. Chem. Sci. 2019, 10, 6876–6885. [Google Scholar] [CrossRef]
- Bolvin, H.; Fürstenberg, A.; Golesorkhi, B.; Nozary, H.; Taarit, I.; Piguet, C. Metal-based linear light upconversion implemented in molecular complexes: Challenges and perspectives. Acc. Chem. Res. 2022, 55, 442–456. [Google Scholar] [CrossRef]
- Sheng, W.; Yang, J.; Li, X.; Liu, G.; Lin, Z.; Long, J.; Xiao, S.; Tan, L.; Chen, Y. Tremendously enhanced photocurrent enabled by triplet–triplet annihilation up-conversion for high-performance perovskite solar cells. Energy Environ. Sci. 2021, 14, 3532–3541. [Google Scholar] [CrossRef]
- Seo, S.E.; Choe, H.-S.; Cho, H.; Kim, H.-i.; Kim, J.-H.; Kwon, O.S. Correction: Recent advances in materials for and applications of triplet–triplet annihilation-based upconversion. J. Mater. Chem. C 2023, 10, 4483–4496. [Google Scholar] [CrossRef]
- Aboshyan-Sorgho, L.; Cantuel, M.; Petoud, S.; Hauser, A.; Piguet, C. Optical sensitization and upconversion in discrete polynuclear chromium–lanthanide complexes. Coord. Chem. Rev. 2012, 256, 1644–1663. [Google Scholar] [CrossRef]
- Carlos, L.D.; Ferreira, R.A.S.; de Zea Bermudez, V.; Julián-López, B.; Escribano, P. Progress on lanthanide-based organic–inorganic hybrid phosphors. Chem. Soc. Rev. 2011, 40, 536–549. [Google Scholar] [CrossRef]
- Nonat, A.M.; Charbonnière, L.J. Upconversion of light with molecular and supramolecular lanthanide complexes. Coord. Chem. Rev. 2020, 409, 213192–213264. [Google Scholar] [CrossRef]
- Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Haushalter, J.P.; Faris, G.W. Upconversion from aqueous phase lanthanide chelates. Opt. Lett. 2005, 30, 1674–1676. [Google Scholar] [CrossRef]
- Wong, K.; Kwok, W.; Wong, W.; Phillips, D.; Cheah, K. Green and red three-photon upconversion from polymeric lanthanide(III) complexes. Angew. Chem. Int. Ed. 2010, 116, 4759–4762. [Google Scholar] [CrossRef]
- Suffren, Y.; Golesorkhi, B.; Zare, D.; Guénée, L.; Nozary, H.; Eliseeva, S.V.; Petoud, S.; Hauser, A.; Piguet, C. Taming lanthanide-centered upconversion at the molecular level. Inorg. Chem. 2016, 55, 9964–9972. [Google Scholar] [CrossRef]
- Wang, F.; Liu, X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 2009, 38, 976–989. [Google Scholar] [CrossRef]
- Tanner, P.A.; Zhou, L.; Duan, C.; Wong, K.-L. Misconceptions in electronic energy transfer: Bridging the gap between chemistry and physics. Chem. Soc. Rev. 2018, 47, 5234–5265. [Google Scholar] [CrossRef]
- Ward, M.D. Mechanisms of sensitization of lanthanide(III)-based luminescence in transition metal/lanthanide and anthracene/lanthanide dyads. Coord. Chem. Rev. 2010, 254, 2634–2642. [Google Scholar] [CrossRef]
- Golesorkhi, B.; Naseri, S.; Guénée, L.; Taarit, I.; Alves, F.; Nozary, H.; Piguet, C. Ligand-sensitized near-infrared to visible linear light upconversion in a discrete molecular erbium complex. J. Am. Chem. Soc. 2021, 143, 15326–15334. [Google Scholar] [CrossRef]
- Balashova, T.V.; Pushkarev, A.P.; Yablonskiy, A.N.; Andreev, B.A.; Bochkarev, M.N. Organic Er-Yb complexes as potential upconversion materials. J. Lumin. 2017, 192, 208–210. [Google Scholar] [CrossRef]
- Zou, W.; Visser, C.; Maduro, J.A.; Pshenichnikov, M.S.; Hummelen, J.C. Broadband dye-sensitized upconversion of near-infrared light. Nat. Photonics 2012, 6, 560–564. [Google Scholar] [CrossRef]
- Suzuki, H.; Nishida, Y.; Hoshino, S. Ligand-sensitized and up-conversion photoluminescence in vacuum-deposited thin films of an infrared electroluminescent organic erbium complex. Mol. Cryst. Liq. Cryst. 2003, 406, 27–37. [Google Scholar] [CrossRef]
- Nonat, A.; Bahamyirou, S.; Lecointre, A.; Przybilla, F.; Mély, Y.; Platas-Iglesias, C.; Camerel, F.; Jeannin, O.; Charbonnière, L.J. Molecular upconversion in water in heteropolynuclear supramolecular Tb/Yb assemblies. J. Am. Chem. Soc. 2019, 141, 1568–1576. [Google Scholar] [CrossRef]
- Gálico, D.A.; Ovens, J.S.; Sigoli, F.A.; Murugesu, M. Room-temperature upconversion in a nanosized {Ln15} molecular cluster-aggregate. ACS Nano 2021, 15, 5580–5585. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jiang, Y.; Liu, J.-Y.; Xu, H.-B.; Zhang, Y.-X.; Peng, X.; Kurmoo, M.; Ng, S.W.; Zeng, M.-H. Discrete heteropolynuclear Yb/Er assemblies: Switching on molecular upconversion under mild conditions. Angew. Chem. Int. Edit. 2021, 60, 22368–22375. [Google Scholar] [CrossRef]
- Yin, H.-J.; Feng, Y.-S.; Liang, N.; Liu, X.-M.; Liu, J.-X.; Wang, K.-Z.; Yao, C.-J. Boosting photo upconversion in electropolymerised thin film with Yb/Er complexes. Adv. Opt. Mater. 2023, 11, 2202550. [Google Scholar] [CrossRef]
- van der Ende, B.M.; Aarts, L.; Meijerink, A. Lanthanide ions as spectral converters for solar cells. Phys. Chem. Chem. Phys. 2009, 11, 11081–11095. [Google Scholar] [CrossRef] [PubMed]
- Souri, N.; Tian, P.; Platas-Iglesias, C.; Wong, K.-L.; Nonat, A.; Charbonnière, L.J. Upconverted photosensitization of Tb visible emission by NIR Yb excitation in discrete supramolecular heteropolynuclear complexes. J. Am. Chem. Soc. 2017, 139, 1456–1459. [Google Scholar] [CrossRef]
- Knighton, R.C.; Soro, L.K.; Lecointre, A.; Pilet, G.; Charbonnière, L. Upconversion in molecular hetero-nonanuclear lanthanide complexes in solution. Chem. Commun. 2021, 57, 53–56. [Google Scholar] [CrossRef]
- Kalmbach, J.; Wang, C.; You, Y.; Förster, C.; Schubert, H.; Heinze, K.; Resch-Genger, U.; Seitz, M. Near-IR to near-IR upconversion luminescence in molecular chromium ytterbium salts. Angew. Chem. Int. Edit. 2020, 59, 18804–18808. [Google Scholar] [CrossRef]
- Dasari, S.; Singh, S.; Kumar, P.; Sivakumar, S.; Patra, A.K. Near-infrared excited cooperative upconversion in luminescent ytterbium(ΙΙΙ) bioprobes as light-responsive theranostic agents. Eur. J. Med. Chem. 2019, 163, 546–559. [Google Scholar] [CrossRef] [PubMed]
- Pini, F.; Francés-Soriano, L.; Andrigo, V.; Natile, M.M.; Hildebrandt, N. Optimizing upconversion nanoparticles for FRET biosensing. ACS Nano 2023, 17, 4971–4984. [Google Scholar] [CrossRef] [PubMed]
- Bhuckory, S.; Lahtinen, S.; Höysniemi, N.; Guo, J.J.; Qiu, X.; Soukka, T.; Hildebrandt, N. Understanding FRET in upconversion nanoparticle nucleic acid biosensors. Nano Lett. 2023, 23, 2253–2261. [Google Scholar] [CrossRef]
- Cutler, C.S.; Hennkens, H.M.; Sisay, N.; Huclier-Markai, S.; Jurisson, S.S. Radiometals for combined imaging and therapy. Chem. Rev. 2013, 113, 858–883. [Google Scholar] [CrossRef]
- Heffern, M.C.; Matosziuk, L.M.; Meade, T.J. Lanthanide probes for bioresponsive imaging. Chem. Rev. 2014, 114, 4496–4539. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, B.; Leal, J.P.; Mendes, R.F.; Paz, F.A.A.; Linden, A.; Smetana, V.; Mudring, A.V.; Avó, J.; Pereira, C.C.L. Lanthanide-based complexes as efficient physiological temperature sensors. Mater. Chem. Phys. 2022, 277, 125424–125435. [Google Scholar] [CrossRef]
- Parker, D.; Fradgley, J.D.; Wong, K.-L. The design of responsive luminescent lanthanide probes and sensors. Chem. Soc. Rev. 2021, 50, 8193–8213. [Google Scholar] [CrossRef]
- Zhang, R.; Yuan, J. Responsive metal complex probes for time-gated luminescence biosensing and imaging. Acc. Chem. Res. 2020, 53, 1316–1329. [Google Scholar] [CrossRef]
- Su, P.-R.; Wang, T.; Zhou, P.-P.; Yang, X.-X.; Feng, X.-X.; Zhang, M.-N.; Liang, L.-J.; Tang, Y.; Yan, C.-H. Self-assembly-induced luminescence of Eu3+-complexes and application in bioimaging. Natl. Sci. Rev. 2021, 9, 102–112. [Google Scholar] [CrossRef]
- Peng, X.-X.; Zhu, X.-F.; Zhang, J.-L. Near Infrared (NIR) imaging: Exploring biologically relevant chemical space for lanthanide complexes. J. Inorg. Biochem. 2020, 209, 111118. [Google Scholar] [CrossRef]
- Ambiliraj, D.B.; Francis, B.; Reddy, M.L.P. Lysosome-targeting luminescent lanthanide complexes: From molecular design to bioimaging. Dalton Trans. 2022, 51, 7748–7762. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.Y.; Yu, Q.; Wei, H.; Liu, S.; Zhao, Q.; Huang, W. Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem. Rev. 2018, 118, 1770–1839. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, A.P.; Alessandro, B.D.; Fu, X. Optical imaging modalities for biomedical applications. IEEE Rev. Biomed. Eng. 2010, 3, 69–92. [Google Scholar] [CrossRef] [PubMed]
- Amoroso, A.J.; Pope, S.J.A. Using lanthanide ions in molecular bioimaging. Chem. Soc. Rev. 2015, 44, 4723–4742. [Google Scholar] [CrossRef]
- Andrews, M.; Jones, J.E.; Harding, L.P.; Pope, S.J.A. Luminescent probes based on water-soluble, dual-emissive lanthanide complexes: Metal ion-induced modulation of near-IR emission. Chem. Commun. 2011, 47, 206–208. [Google Scholar] [CrossRef]
- Dong, H.; Sun, L.-D.; Yan, C.-H. Energy transfer in lanthanide upconversion studies for extended optical applications. Chem. Soc. Rev. 2015, 44, 1608–1634. [Google Scholar] [CrossRef]
- Zhang, T.; Zhu, X.; Cheng, C.C.W.; Kwok, W.-M.; Tam, H.-L.; Hao, J.; Kwong, D.W.J.; Wong, W.-K.; Wong, K.-L. Water-soluble mitochondria-specific ytterbium complex with impressive NIR emission. J. Am. Chem. Soc. 2011, 133, 20120–20122. [Google Scholar] [CrossRef]
- D’Aléo, A.; Bourdolle, A.; Brustlein, S.; Fauquier, T.; Grichine, A.; Duperray, A.; Baldeck, P.L.; Andraud, C.; Brasselet, S.; Maury, O. Ytterbium-based bioprobes for near-infrared two-photon scanning laser microscopy imaging. Angew. Chem. Int. Edit. 2012, 51, 6622–6625. [Google Scholar] [CrossRef]
- Bui, A.T.; Grichine, A.; Brasselet, S.; Duperray, A.; Andraud, C.; Maury, O. Unexpected efficiency of a luminescent samarium(III) complex for combined visible and near-infrared biphotonic microscopy. Chem. Eur. J. 2015, 21, 17757–17761. [Google Scholar] [CrossRef]
- Bui, A.T.; Beyler, M.; Grichine, A.; Duperray, A.; Mulatier, J.-C.; Guyot, Y.; Andraud, C.; Tripier, R.; Brasselet, S.; Maury, O. Near infrared two photon imaging using a bright cationic Yb(III) bioprobe spontaneously internalized into live cells. Chem. Commun. 2017, 53, 6005–6008. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, J.; Zhang, F. Second near-infrared window fluorescence nanoprobes for deep-tissue in vivo multiplexed bioimaging. Adv. Drug Deliv. Rev. 2023, 193, 114697–114701. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, M.A.; Huibo, W.; Zhiwei, L.; Zuqiang, B.; Chunhui, H. Advances in luminescent lanthanide complexes and applications. Sci. China Technol. Sci. 2018, 61, 1265–1285. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Kitagawa, Y.; Nakanishi, T. Effective photosensitized, electrosensitized, and mechanosensitized luminescence of lanthanide complexes. NPG Asia Mater. 2018, 10, 52–70. [Google Scholar] [CrossRef]
- Ning, Y.; Jin, G.Q.; Wang, M.X.; Gao, S.; Zhang, J.L. Recent progress in metal-based molecular probes for optical bioimaging and biosensing. Curr. Opin. Chem. Biol. 2022, 66, 102097–102108. [Google Scholar] [CrossRef] [PubMed]
- Mawani, Y.; Cawthray, J.F.; Chang, S.; Sachs-Barrable, K.; Weekes, D.M.; Wasan, K.M.; Orvig, C. In vitro studies of lanthanide complexes for the treatment of osteoporosis. Dalton Trans. 2013, 42, 5999–6012. [Google Scholar] [CrossRef] [PubMed]
- Campello, M.P.C.; Palma, E.; Correia, I.; Paulo, P.M.R.; António, M.; José, R.; Marques, F. Lanthanide complexes with phenanthroline-based ligands: Insights into cell death mechanisms obtained by microscopy techniques. Dalton Trans. 2019, 48, 4611–4625. [Google Scholar] [CrossRef]
- Fung, Y.O.; Wu, W.; Yeung, C.T.; Kong, H.K.; Wong, K.C.; Lo, W.S.; Law, G.L.; Wong, K.L.; Lau, C.K.; Lee, C.S.; et al. In vitro imaging and human serum albumin responsive dimeric lanthanide DO3A complex. Inorg. Chem. 2011, 50, 5517–5525. [Google Scholar] [CrossRef]
- Sun, L.; Ge, X.; Liu, J.; Qiu, Y.; Wei, Z.; Tian, B.; Shi, L. Multifunctional nanomesoporous materials with upconversion (in vivo) and downconversion (in vitro) luminescence imaging based on mesoporous capping UCNPs and linking lanthanide complexes. Nanoscale 2014, 6, 13242–13253. [Google Scholar] [CrossRef]
- Sachs, S.; Heller, A.; Weiss, S.; Bok, F.; Bernhard, G. Interaction of Eu(III) with mammalian cells: Cytotoxicity, uptake, and speciation as a function of Eu(III) concentration and nutrient composition. Toxicol. In Vitro 2015, 29, 1555–1568. [Google Scholar] [CrossRef]
- Ning, Y.; Chen, S.; Chen, H.; Wang, J.X.; He, S.; Liu, Y.W.; Cheng, Z.; Zhang, J.L. A proof-of-concept application of water-soluble ytterbium(III) molecular probes in in vivo nir-II whole body bioimaging. Inorg. Chem. Front. 2019, 6, 1962–1967. [Google Scholar] [CrossRef]
- Kovalenko, A.D.; Pavlov, A.A.; Ustinovich, I.D.; Kalyakina, A.S.; Utochnikova, V.V. Highly NIR-emitting ytterbium complexes containing 2-(tosylaminobenzylidene)-n-benzoylhydrazone anions: Structure in solution and use for bioimaging. Dalton Trans. 2021, 50, 3786–3793. [Google Scholar] [CrossRef] [PubMed]
- Shockley, W.; Queisser, H.J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 2004, 32, 510–519. [Google Scholar] [CrossRef]
- Trupke, T.; Green, M.A.; Würfel, P. Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys. 2002, 92, 4117–4122. [Google Scholar] [CrossRef]
- Naimovičius, L.; Bharmoria, P.; Moth-Poulsen, K. Triplet–triplet annihilation mediated photon upconversion solar energy systems. Mater. Chem. Front. 2023, 7, 2297–2315. [Google Scholar] [CrossRef]
- Husain, A.A.F.; Hasan, W.Z.W.; Shafie, S.; Hamidon, M.N.; Pandey, S.S. A review of transparent solar photovoltaic technologies. Renew. Sust. Energy Rev. 2018, 94, 779–791. [Google Scholar] [CrossRef]
- Fischer, S.; Fröhlich, B.; Steinkemper, H.; Krämer, K.W.; Goldschmidt, J.C. Absolute upconversion quantum yield of β-NaYF4 doped with Er3+ and external quantum efficiency of upconverter solar cell devices under broad-band excitation considering spectral mismatch corrections. Sol. Energy Mater. Sol. Cells 2014, 122, 197–207. [Google Scholar] [CrossRef]
- Zhang, J.; Xuan, T.; Li, P.; Li, H.; Wang, C.; Wang, J. Photovoltaic efficiency enhancement for crystalline silicon solar cells via a Bi-functional layer based on europium complex@nanozeolite@SiO2. J. Lumin. 2019, 215, 116708. [Google Scholar] [CrossRef]
- Wang, Y.; Gawryszewska-Wilczynsk, P.; Zhang, X.; Yin, J.; Wen, Y.; Li, H. Photovoltaic efficiency enhancement of polycrystalline silicon solar cells by a highly stable luminescent film. Sci. China Mater. 2020, 63, 544–551. [Google Scholar] [CrossRef]
- Bi, W.; Wu, Y.; Chen, C.; Zhou, D.; Song, Z.; Li, D.; Chen, G.; Dai, Q.; Zhu, Y.; Song, H. Dye sensitization and local surface plasmon resonance-enhanced upconversion luminescence for efficient perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 24737–24746. [Google Scholar] [CrossRef]
- Que, M.; Que, W.; Yin, X.; Chen, P.; Yang, Y.; Hu, J.; Yu, B.; Du, Y. Enhanced conversion efficiency in perovskite solar cells by effectively utilizing near infrared light. Nanoscale 2016, 8, 14432–14437. [Google Scholar] [CrossRef]
- Correia, S.F.H.; Fernandes, R.L.; Fu, L.; Nolasco, M.M.; Carlos, L.D.; Ferreira, R.A.S. High emission quantum yield Tb3+-activated organic-inorganic hybrids for UV-down-shifting green light-emitting diodes. Eur. J. Inorg. Chem. 2020, 2020, 1736–1742. [Google Scholar] [CrossRef]
- Fang, M.; Bispo-Jr, A.G.; Fu, L.; Ferreira, R.A.S.; Carlos, L.D. Efficient green-emitting Tb3+-doped di-ureasil coating phosphors for near-UV excited light-emitting diodes. J. Lumin. 2020, 219, 116910. [Google Scholar] [CrossRef]
- Gray, V.; Moth-Poulsen, K.; Albinsson, B.; Abrahamsson, M. Towards efficient solid-state triplet–triplet annihilation based photon upconversion: Supramolecular, macromolecular and self-assembled systems. Coord. Chem. Rev. 2018, 362, 54–71. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, H.-J.; Xiao, Z.-G.; Feng, Y.; Yao, C.-J. Recent Progress in Photonic Upconversion Materials for Organic Lanthanide Complexes. Materials 2023, 16, 5642. https://doi.org/10.3390/ma16165642
Yin H-J, Xiao Z-G, Feng Y, Yao C-J. Recent Progress in Photonic Upconversion Materials for Organic Lanthanide Complexes. Materials. 2023; 16(16):5642. https://doi.org/10.3390/ma16165642
Chicago/Turabian StyleYin, Hong-Ju, Zhong-Gui Xiao, Yansong Feng, and Chang-Jiang Yao. 2023. "Recent Progress in Photonic Upconversion Materials for Organic Lanthanide Complexes" Materials 16, no. 16: 5642. https://doi.org/10.3390/ma16165642
APA StyleYin, H. -J., Xiao, Z. -G., Feng, Y., & Yao, C. -J. (2023). Recent Progress in Photonic Upconversion Materials for Organic Lanthanide Complexes. Materials, 16(16), 5642. https://doi.org/10.3390/ma16165642