Super High-Concentration Si and N Doping of CVD Diamond Film by Thermal Decomposition of Silicon Nitride Substrate
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Characterization of Diamond Films with Different Growth Times
3.2. Characterization of Diamond Films with GO Particles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mizuochi, N.; Makino, T.; Kato, H.; Takeuchi, D.; Ogura, M.; Okushi, H.; Nothaft, M.; Neumann, P.; Gali, A.; Jelezko, F.; et al. Electrically driven single-photon source at room temperature in diamond. Nat. Photonics 2012, 6, 299–303. [Google Scholar] [CrossRef]
- Faraon, A.; Barclay, P.E.; Santori, C.; Fu, K.-M.C.; Beausoleil, R.G. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nat. Photonics 2011, 5, 301–305. [Google Scholar] [CrossRef]
- Shikata, S. Single crystal diamond wafers for high power electronics. Diam. Relat. Mater. 2016, 65, 168–175. [Google Scholar] [CrossRef]
- Chen, N.C.; Sun, F.H. Atomic-Level Investigation ofCHxandC2HxAdsorption onβ-SiC (111) Surface for CVD Diamond Growth from DFT Calculations. J. Nanomater. 2011, 2011, 910372. [Google Scholar] [CrossRef]
- Liu, T.; Raabe, D. Influence of nitrogen doping on growth rate and texture evolution of chemical vapor deposition diamond films. Appl. Phys. Lett. 2009, 94, 021119. [Google Scholar] [CrossRef]
- Fabisiak, K.; Kowalska, M.; Szybowicz, M.; Paprocki, K.; Popielarski, P.; Wrzyszczyński, A.; Mosińska, L.; Zhusupkalieva, G.K. The Undoped CVD Diamond Electrode: The Effect of Surface Pretreatment on its Electrochemical Properties. Adv. Eng. Mater. 2013, 15, 935–940. [Google Scholar] [CrossRef]
- Yeom, D.-Y.; Jeon, W.; Tu, N.D.K.; Yeo, S.Y.; Lee, S.-S.; Sung, B.J.; Chang, H.; Lim, J.A.; Kim, H. High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties. Sci. Rep. 2015, 5, 9817. [Google Scholar] [CrossRef]
- Kalish, R. The search for donors in diamond. Diam. Relat. Mater. 2001, 10, 1749–1755. [Google Scholar] [CrossRef]
- Herbschleb, E.D.; Kato, H.; Maruyama, Y.; Danjo, T.; Makino, T.; Yamasaki, S.; Ohki, I.; Hayashi, K.; Morishita, H.; Fujiwara, M.; et al. Ultra-long coherence times amongst room-temperature solid-state spins. Nat. Commun. 2019, 10, 3766. [Google Scholar] [CrossRef]
- Wan, C.L.; Gu, X.K.; Dang, F.; Itoh, T.; Wang, Y.F.; Sasaki, H.; Kondo, M.; Koga, K.; Yabuki, K.; Snyder, G.J.; et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 2015, 14, 622–627. [Google Scholar] [CrossRef]
- Pinault-Thaury, M.-A.; Tillocher, T.; Habka, N.; Kobor, D.; Jomard, F.; Chevallier, J.; Barjon, J. n-Type CVD diamond: Epitaxy and doping. Mater. Sci. Eng. B Adv. 2011, 176, 1401–1408. [Google Scholar] [CrossRef]
- Pinault, M.-A.; Barjon, J.; Kociniewski, T.; Jomard, F.; Chevallier, J. The n-type doping of diamond: Present status and pending questions. Physica B 2007, 401, 51–56. [Google Scholar] [CrossRef]
- Gajar, B.; Yadav, S.; Sawle, D.; Maurya, K.K.; Gupta, A.; Aloysius, R.P.; Sahoo, S. Substrate mediated nitridation of niobium into superconducting Nb(2)N thin films for phase slip study. Sci. Rep. 2019, 9, 8811. [Google Scholar] [CrossRef]
- Yadav, S.; Sahoo, S. Interface study of thermally driven chemical kinetics involved in Ti/Si3N4 based metal-substrate assembly by X-ray photoelectron spectroscopy. Appl. Surf. Sci. 2021, 541, 148465. [Google Scholar] [CrossRef]
- Sittimart, P.; Ohmagari, S.; Umezawa, H.; Kato, H.; Ishiji, K.; Yoshitake, T. Thermally Stable and Radiation-Proof Visible-Light Photodetectors Made from N-Doped Diamond. Adv. Opt. Mater. 2023, 11, 2203006. [Google Scholar] [CrossRef]
- Matsumoto, T.; Mukose, T.; Makino, T.; Takeuchi, D.; Yamasaki, S.; Inokuma, T.; Tokuda, N. Diamond Schottky-pn diode using lightly nitrogen-doped layer. Diam. Relat. Mater. 2017, 75, 152–154. [Google Scholar] [CrossRef]
- Secroun, A.; Tallaire, A.; Achard, J.; Civrac, G.; Schneider, H.; Gicquel, A. Photoconductive properties of lightly N-doped single crystal CVD diamond films. Diam. Relat. Mater. 2007, 16, 953–957. [Google Scholar] [CrossRef]
- Hall, D.L.; Voss, L.F.; Grivickas, P.; Bora, M.; Conway, A.M.; Scajev, P.; Grivickas, V. Photoconductive Switch with High Sub-Bandgap Responsivity in Nitrogen-Doped Diamond. IEEE Electron Device Lett. 2020, 41, 1070–1073. [Google Scholar] [CrossRef]
- Okumura, Y.; Kanayama, K.; Nishiguchi, H. Synthesis of n-type semiconducting diamond films in acetylene flame with nitrogen doping. Proc. Combust. Inst. 2017, 36, 4409–4417. [Google Scholar] [CrossRef]
- Zkria, A.; Gima, H.; Abubakr, E.; Mahmoud, A.; Haque, A.; Yoshitake, T. Correlated Electrical Conductivities to Chemical Configurations of Nitrogenated Nanocrystalline Diamond Films. Nanomaterials 2022, 12, 854. [Google Scholar] [CrossRef]
- Al-Riyami, S.; Ohmagari, S.; Yoshitake, T. Fourier transform infrared spectroscopic study of nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite films prepared by pulsed laser deposition. Diam. Relat. Mater. 2011, 20, 1072–1075. [Google Scholar] [CrossRef]
- Tsao, J.Y.; Chowdhury, S.; Hollis, M.A.; Jena, D.; Johnson, N.M.; Jones, K.A.; Kaplar, R.J.; Rajan, S.; Van de Walle, C.G.; Bellotti, E.; et al. Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges. Adv. Electron. Mater. 2018, 4, 1600501. [Google Scholar] [CrossRef]
- Chen, N.C.; Shen, B.; Yang, G.D.; Sun, F.H. Tribological and cutting behavior of silicon nitride tools coated with monolayer- and multilayer-microcrystalline HFCVD diamond films. Appl. Surf. Sci. 2013, 265, 850–859. [Google Scholar] [CrossRef]
- Liu, X.B.; Chen, X.; Singh, D.J.; Stern, R.A.; Wu, J.S.; Petitgirard, S.; Bina, C.R.; Jacobsen, S.D. Boron–oxygen complex yields n-type surface layer in semiconducting diamond. Proc. Natl. Acad. Sci. USA 2019, 116, 7703–7711. [Google Scholar] [CrossRef]
- Watanabe, A.; Nishikawa, T.; Kato, H.; Fujie, M.; Fujiwara, M.; Makino, T.; Yamasaki, S.; Herbschleb, E.D.; Mizuochi, N. Shallow NV centers augmented by exploiting n-type diamond. Carbon 2021, 178, 294–300. [Google Scholar] [CrossRef]
- Zhou, F.; Chen, N.C.; Ju, F.S. Enhanced Growth Rate of Chemical Vapor Deposition Diamond Coating Motivated by Graphene Oxide. Coatings 2021, 11, 559. [Google Scholar] [CrossRef]
- Chen, N.C.; Pu, L.W.; Sun, F.H.; He, P.; Zhu, Q.Z.; Ren, J.X. Tribological behavior of HFCVD multilayer diamond film on silicon carbide. Surf. Coat. Technol. 2015, 272, 66–71. [Google Scholar] [CrossRef]
- Li, S.W.; Li, Y.C.; Xiao, H.R.; Li, X.D.; Wang, Q.; Tang, M.; Tu, H.B.; Huang, J.Q.; Chen, L.F.; Yu, Z.Y. Oxidation behavior of Si3N4 fibers derived from polycarbosilane. Corros. Sci. 2018, 136, 9–17. [Google Scholar] [CrossRef]
- Linnik, S.A.; Zenkin, S.P.; Gaydaychuk, A.V. Heteroepitaxial Diamond Growth from the Gas Phase: Problems and Prospects (Review). Instrum. Exp. Tech. 2021, 64, 177–189. [Google Scholar] [CrossRef]
- Yan, S.S.; Peng, H.Y.; Zhao, Z.B.; Pan, M.M.; Yang, D.L.; Jin-Hua, A.; Ye, G.L.; Wang, C.T.; Guo, X.W. Nitrogen-doped Diamond Electrode Property and Anodic Catalytic Degradation of Nitrobenzene. J. Inorg. Mater. 2018, 33, 565–569. [Google Scholar] [CrossRef]
- Dychalska, A.; Popielarski, P.; Franków, W.; Fabisiak, K.; Paprocki, K.; Szybowicz, M. Study of CVD diamond layers with amorphous carbon admixture by Raman scattering spectroscopy. Mater. Sci. 2015, 33, 799–805. [Google Scholar] [CrossRef]
- Ralchenko, V.G.; Smolin, A.A.; Pereverzev, V.G.; Obraztsova, E.D.; Korotoushenko, K.G.; Konov, V.I.; Lakhotkin, Y.V.; Loubnin, E.N. Diamond deposition on steel with CVD tungsten intermediate layer. Diam. Relat. Mater. 1995, 4, 754–758. [Google Scholar] [CrossRef]
- Steven, P.; Nemanich, R.J. Raman spectroscopy of diamond and doped diamond. Philos. Trans. R. Soc. Lond. Ser. A 2004, 362, 2537–2565. [Google Scholar]
- Tabbal, M.; MÃrel, P.; Chaker, M.; Khakani, M.A.E.; Herbert, E.G.; Lucas, B.N.; OâHern, M.E. Effect of laser intensity on the microstructural and mechanical properties of pulsed laser deposited diamond-like-carbon thin films. J. Appl. Phys. 1999, 85, 3860. [Google Scholar] [CrossRef]
- Díaz, J.; Paolicelli, G.; Ferrer, S.; Comin, F. Separation of the sp3 and sp2 components in the C1s photoemission spectra of amorphous carbon films. Phys. Rev. B 1996, 54, 8064–8069. [Google Scholar] [CrossRef]
- Mérel, P.; Tabbal, M.; Chaker, M.; Moisa, S.; Margot, J. Direct evaluation of the sp3 content in diamond-like-carbon films by XPS. Appl. Surf. Sci. 1998, 136, 105–110. [Google Scholar] [CrossRef]
- Ghodbane, S.; Ballutaud, D.; Omnès, F.; Agnès, C. Comparison of the XPS spectra from homoepitaxial {111}, {100} and polycrystalline boron-doped diamond films. Dia. Rel. Mate. 2010, 19, 630–636. [Google Scholar] [CrossRef]
- Paprocki, K.; Dittmar-Wituski, A.; Trzciński, M.; Szybowicz, M.; Fabisiak, K.; Dychalska, A. The comparative studies of HF CVD diamond films by Raman and XPS spectroscopies. Opt. Mater. 2019, 95, 109251. [Google Scholar] [CrossRef]
- Piliptsou, D.G.; Rudenkov, A.S.; Rogachev, A.V.; Jiang, X.H.; Lychnikov, P.A.; Emel’yanov, V.A. XPS study of the structure of nitrogen doped a-C film. In Proceedings of the 12th International Scientific Conference on Radiation-Thermal Effects and Processes in Inorganic Materials, Tomsk, Russia, 4–12 September 2016; p. 012103. [Google Scholar]
- Ashtijoo, P.; Bhattacherjee, S.; Sutarto, R.; Hu, Y.F.; Yang, Q.Q. Fabrication and characterization of adherent diamond-like carbon based thin films on polyethylene terephthalate by end hall ion beam deposition. Surf. Coat. Technol. 2016, 308, 90–97. [Google Scholar] [CrossRef]
- Naumkin, A.V.; Kraut-Vass, A.; Gaarenstroom, S.W.; Powell, C.J. NIST X-ray Photoelectron Spectroscopy Database, NIST standard reference database 20 version 4.1; NIST: Gaithersburg, MD, USA, 2012. [Google Scholar] [CrossRef]
- Cao, C.; Ju, F.; Chen, N.; He, P. A competitive-adsorption chemical vapor deposition method: Diamond coated on WC-Co substrate without acid-alkali pretreatment by adding graphene oxide particles. Vacuum 2023, 214, 112220. [Google Scholar] [CrossRef]
- Ain, Q.T.; Al-Modlej, A.; Alshammari, A.; Anjum, M.N. Effect of solvents on optical band gap of silicon-doped graphene oxide. Mater. Res. Experess 2018, 5, 035017. [Google Scholar] [CrossRef]
- Zhao, H.-B.; Wang, W.-D.; Lü, Q.-F.; Lin, T.-T.; Lin, Q.L.; Yang, H.J. Preparation and application of porous nitrogen-doped graphene obtained by co-pyrolysis of lignosulfonate and graphene oxide. Bioresour. Technol. 2015, 176, 106–111. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Wang, Y.; Yan, H.; Cao, C.; Chen, N. Super High-Concentration Si and N Doping of CVD Diamond Film by Thermal Decomposition of Silicon Nitride Substrate. Materials 2023, 16, 5849. https://doi.org/10.3390/ma16175849
Yang Y, Wang Y, Yan H, Cao C, Chen N. Super High-Concentration Si and N Doping of CVD Diamond Film by Thermal Decomposition of Silicon Nitride Substrate. Materials. 2023; 16(17):5849. https://doi.org/10.3390/ma16175849
Chicago/Turabian StyleYang, Yong, Yongnian Wang, Huaxin Yan, Chenyi Cao, and Naichao Chen. 2023. "Super High-Concentration Si and N Doping of CVD Diamond Film by Thermal Decomposition of Silicon Nitride Substrate" Materials 16, no. 17: 5849. https://doi.org/10.3390/ma16175849
APA StyleYang, Y., Wang, Y., Yan, H., Cao, C., & Chen, N. (2023). Super High-Concentration Si and N Doping of CVD Diamond Film by Thermal Decomposition of Silicon Nitride Substrate. Materials, 16(17), 5849. https://doi.org/10.3390/ma16175849