Study on the Water-Sensitivity Passivation Effect and Mechanism of PA-ES Composite Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- ES
- PA
- Sample preparation
2.2. Methods
- Water-sensitive passivation effect evaluation test
- Water-sensitive passivation mechanism analysis test
3. Results
3.1. Water-Sensitive Passivation Effect Evaluation Test
- Limit water content test
- Free swell ratio test
- No-loading swell ratio test
- Linear shrinkage test
- Direct shear test
3.2. Water-Sensitive Passivation Mechanism Analysis Test
- PSD test
- XRD test
- ESEM test
4. Discussion
5. Conclusions
- (1)
- PA can improve the physical properties of the PA-ES composite. The specific performance is that the liquid limit, plastic limit, and plasticity index all decrease with the increase in PA content, and the interaction activity with water decreases.
- (2)
- PA can effectively inhibit the deformation of the PA-ES composite. With the increase in PA content, both the swelling index and the shrinkage index show a downward trend. When the PA content is 6%, the deformation of the sample can be effectively suppressed.
- (3)
- PA can significantly improve the mechanical properties of the PA-ES composite. Specifically, the saturated shear strength, cohesion, and internal friction angle are significantly increased.
- (4)
- When the PA-ES composite reacts with water, PA increases the ES particle size through adsorption, reduces the content of clay particles, optimizes the gradation, and thus reduces the water reactivity of clay particles. By bonding, agglomeration, and filling, the deformation of the composite was inhibited and the strength of the composite was improved. The above reaction mechanism is also reflected in the macroscopic engineering characteristics of the PA-ES composite.
- (5)
- PA is a promising soil passivator. When PA content is 6%, the PA-ES composite has a good water-sensitive passivation effect, which can provide an engineering reference for the treatment of expansive soil.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Y. Bearing capacity of unsaturated expansive soils. Geotech. Geol. Eng. 2004, 22, 611–625. [Google Scholar] [CrossRef]
- Zhao, S.; Shi, Z.; Peng, M.; Bao, Y. Stability analysis of expansive soil slope considering seepage softening and moistening expansion deformation. Water 2020, 12, 1678. [Google Scholar] [CrossRef]
- Jain, A.; Choudhary, A.K.; Jha, J.N. Influence of rice husk ash on the swelling and strength characteristics of expansive soil. Geotech. Geol. Eng. 2020, 38, 2293–2302. [Google Scholar] [CrossRef]
- Elkady, T.Y.; Al-Mahbashi, A.M.; Al-Refeai, T.O. Stress-dependent soil-water characteristic curves of lime-treated expansive clay. J. Mater. Civ. Sci. 2015, 27, 04014127. [Google Scholar] [CrossRef]
- Liu, Y.; Su, Y.; Namdar, A.; Zhou, G.; She, Y.; Yang, Q. Utilization of cementitious material from residual rice husk ash and lime in stabilization of expansive soil. Adv. Civ. Eng. 2019, 2019, 5205276. [Google Scholar] [CrossRef]
- Shi, B.; Jiang, H.; Liu, Z.; Fang, H.Y. Engineering geological characteristics of expansive soils in China. Eng. Geol. 2002, 67, 63–71. [Google Scholar] [CrossRef]
- Stixrude, L.; Peacor D, R. First-principles study of illite–smectite and implications for clay mineral systems. Nature 2002, 420, 165–168. [Google Scholar] [CrossRef]
- Alazigha, D.P.; Indraratna, B.; Vinod, J.S.; Heitor, A. Mechanisms of stabilization of expansive soil with lignosulfonate ad-mixture. Transp. Geotech. 2018, 14, 81–92. [Google Scholar] [CrossRef]
- Ye, W.; Zhang, Y.; Chen, B.; Zhou, X.; Xie, Q. Shear strength of an unsaturated weakly expansive soil. J. Rock Mech. Geotech. 2010, 2, 155–161. [Google Scholar] [CrossRef]
- Dao, H.M.; Nguyen, A.T.T.; Do, T.M.; Do, T.M. Effect of wetting-drying cycles on surface cracking and swell-shrink behavior of expansive soil modified with ionic soil stabilizer. J. Mater. Civ. Sci. 2020, 61, 1–13. [Google Scholar] [CrossRef]
- Duong, H.M.; Tran, T.Q.; Kopp, R.; Myint, S.M.; Peng, L. Direct spinning of horizontally aligned carbon nanotube fibers and films from the floating catalyst method. In Nanotube Superfiber Materials; William Andrew Publishing: New York, NY, USA, 2019; pp. 3–19. [Google Scholar] [CrossRef]
- Duong, H.M.; Myint, S.M.; Tran, T.Q.; Le, D.K. Chapter 6—Post-spinning treatments to carbon nanotube fibers. In Carbon Nanotube Fibers and Yarns; The Textile Institute Book Series; Miao, M., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; pp. 103–134. [Google Scholar] [CrossRef]
- Ikeagwuani, C.C.; Nwonu, D.C. Emerging trends in expansive soil stabilisation: A review. J. Rock Mech. Geotech. Eng. 2019, 11, 423–440. [Google Scholar] [CrossRef]
- IFurlan, A.P.; Razakamanantsoa, A.; Ranaivomanana, H.; Levacher, D.; Katsumi, T. Shear strength performance of marine sediments stabilized using cement, lime and fly ash. Constr. Build. Mater. 2018, 184, 454–463. [Google Scholar] [CrossRef]
- Jalal, F.E.; Xu, Y.; Jamhiri, B.; Memon, S.A. On the recent trends in expansive soil stabilization using calcium-based stabilizer materials (CSMs): A comprehensive review. Adv. Mater. Sci. Eng. 2020, 2020, 1–23. [Google Scholar] [CrossRef]
- Hunter, D. Lime-induced heave in sulfate-bearing clay soils. J. Environ. Eng. 1988, 114, 150–167. [Google Scholar] [CrossRef]
- Al-Atroush, M.E.; Sebaey, T.A. Stabilization of expansive soil using hydrophobic polyurethane foam: A review. Transp. Res. Rec. 2021, 27, 100494. [Google Scholar] [CrossRef]
- Sharo, A.A.; Alawneh, A.S.; Al Zghool, H.N.; Rabab’ah, S.R. Effect of Alkali-Resistant Glass Fibers and Cement on the Ge-otechnical Properties of Highly Expansive Soil. J. Mater. Civ. Eng. 2022, 34, 04021417. [Google Scholar] [CrossRef]
- Sahoo, S.; Singh, S.P. Strength and durability properties of expansive soil treated with geopolymer and conventional stabi-lizers. Constr. Build. Mater. 2022, 328, 127078. [Google Scholar] [CrossRef]
- Liu, J.; Shi, B.; Jiang, H.; Bae, S.; Huang, H. Improvement of water-stability of clay aggregates admixed with aqueous polymer soil stabilizers. Catena 2009, 77, 175–179. [Google Scholar] [CrossRef]
- He, S.; Yu, X.; Banerjee, A.; Puppala, A.J. Expansive Soil Treatment with Liquid Ionic Soil Stabilizer. Transp. Res. Rec. 2018, 2672, 185–194. [Google Scholar] [CrossRef]
- Arab, M.G.; Mousa, R.A.; Gabr, A.R.; Azam, A.M.; El-Badawy, S.M.; Hassan, A.F. Resilient behavior of sodium alginate–treated cohesive soils for pavement applications. J. Mater. Civ. Eng. 2019, 31, 04018361. [Google Scholar] [CrossRef]
- Ghasemzadeh, H.; Mehrpajouh, A.; Pishvaei, M.; Mirzababaei, M. Effects of curing method and glass transition temperature on the unconfined compressive strength of acrylic liquid polymer–stabilized kaolinite. J. Mater. Civ. Eng. 2020, 32, 04020212. [Google Scholar] [CrossRef]
- Qi, C.; Bai, Y.; Liu, J.; Bu, F.; Kanungo, D.P.; Song, Z.; He, X. Desiccation cracking behavior of polyurethane and poly-acrylamide admixed clayey soils. Polymers 2020, 12, 2398. [Google Scholar] [CrossRef] [PubMed]
- He, S. Chemical Stabilization of Expansive Soils Using Liquid Ionic Soil Stabilizers (LISS); The University of Texas at Arlington: Arlington, TX, USA, 2019. [Google Scholar]
- Taher, Z.J.; Scalia, J., IV; Bareither, C.A. Comparative assessment of expansive soil stabilization by commercially available polymers. Transp. Geotech. 2020, 24, 100387. [Google Scholar] [CrossRef]
- Rezaeimalek, S.; Nasouri, R.; Huang, J.; Bin-Shafique, S. Curing method and mix design evaluation of a styrene-acrylic based liquid polymer for sand and clay stabilization. J. Mater. Civ. Eng. 2018, 30, 04018200. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Zhang, J.; Chai, M. Effectiveness of ionic polymer soil stabilizers on warm frozen soil. KSCE J. Civ. Eng. 2019, 23, 2867–2876. [Google Scholar] [CrossRef]
- GB/T50123-2019; Chinese Standard. Standard for Geotechnical Testing Method. China Planning Press: Beijing, China, 2019. (In Chinese)
- Miao, L.; Liu, S.; Lai, Y. Research of soil–water characteristics and shear strength features of Nanyang expansive soil. Eng. Geol. 2002, 65, 261–267. [Google Scholar] [CrossRef]
- GB 50112-2013; Chinese Standard Technical Code for Buildings in Expansive Soil Regions. China Architecture & Building Press: Beijing, China, 2013. (In Chinese)
- Wu, J.H.; Ao, W.C.; Wang, M.S.; Liu, J.M.; Fu, F.Y. Strength and expansion and deformation characteristics of modified expansive soil by octadecyl amine. Adv. Civ. Eng. 2021, 2021, 1–15. [Google Scholar] [CrossRef]
- Phanikumar, B.R.; Nagaraju, T.V. Effect of fly ash and rice husk ash on index and engineering properties of expansive clays. Geotech. Geol. Eng. 2018, 36, 3425–3436. [Google Scholar] [CrossRef]
- Tan, X.L.; Zhang, G.P.; Hang, Y.I.N.; FURUKAWA, Y. Characterization of particle size and settling velocity of cohesive sediments affected by a neutral exopolymer. Int. J. Sediment Res. 2012, 27, 473–485. [Google Scholar] [CrossRef]
- Yazdandoust, F.; Yasrobi, S.S. Effect of cyclic wetting and drying on swelling behavior of polymer-stabilized expansive clays. Appl. Clay Sci. 2010, 50, 461–468. [Google Scholar] [CrossRef]
- Soltani, A.; Deng, A.; Taheri, A.; O’Kelly, B.C. Intermittent swelling and shrinkage of a highly expansive soil treated with polyacrylamide. J. Rock Mech. Geotech. Eng. 2022, 14, 252–261. [Google Scholar] [CrossRef]
- Naeini, S.A.; Naderinia, B.; Izadi, E. Unconfined compressive strength of clayey soils stabilized with waterborne polymer. KSCE J. Civ. Eng. 2012, 16, 943–949. [Google Scholar] [CrossRef]
- Yang, B.; Xu, K.; Zhang, Z. Mitigating evaporation and desiccation cracks in soil with the sustainable material biochar. Soil Sci. Soc. Am. J. 2020, 84, 461–471. [Google Scholar] [CrossRef]
- Vydehi, K.V.; Moghal, A.A.B. Effect of biopolymeric stabilization on the strength and compressibility characteristics of co-hesive soil. J. Mater. Civ. Eng. 2022, 34, 04021428. [Google Scholar] [CrossRef]
- Wang, D.Y.; Ma, W.; Niu, Y.H.; Chang, X.X.; Wen, Z. Effects of cyclic freezing and thawing on mechanical properties of Qinghai–Tibet clay. Cold Reg. Sci. Technol. 2007, 48, 34–43. [Google Scholar] [CrossRef]
- Wei, J.; Shi, B.; Li, J.; Li, S.; He, X. Shear strength of purple soil bunds under different soil water contents and dry densities: A case study in the Three Gorges Reservoir Area, China. Catena 2018, 166, 124–133. [Google Scholar] [CrossRef]
- Liu, J.; Shi, B.; Jiang, H.; Huang, H.; Wang, G.; Kamai, T. Research on the stabilization treatment of clay slope topsoil by organic polymer soil stabilizer. Eng. Geol. 2011, 117, 114–120. [Google Scholar] [CrossRef]
- Liu, S.; Du, K.; Wen, K.; Armwood-Gordon, C.; Li, Y.; Navarro, I.; Li, L. Stabilization of Expansive Clayey Soil Through Hydrogel for Mechanical Improvements. Int. J. Civ. Eng. 2023, 21, 1423–1431. [Google Scholar] [CrossRef]
Soil Properties | Value |
---|---|
Nature water content (%) | 26.56 |
Dry unit weight (g/cm3) | 1.51 |
Liquid limit (%) | 63.8 |
Plastic limit (%) | 30.2 |
Free swell ratio (%) | 47.8% |
Optimum moisture content (%) | 17% |
Maximum dry unit weight (g/cm3) | 1.76 |
Specific gravity | 2.71 |
Passing 0.05 mm sieve (%) | 41.13% |
Characteristics | PA |
---|---|
Molecular formula | (C3H4O2)n |
Molecular weight Mw | 1.30 × 105 |
Mean grain size (μm) | 53 |
PH | 6.9 |
State | Powder |
Color | White |
Solvability in Water | Solution |
Unit weight (g/cm3) | 1.29 |
Solid content (%) | 46.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Wang, R.; Zhang, Q.; Luo, Y.; Xu, H. Study on the Water-Sensitivity Passivation Effect and Mechanism of PA-ES Composite Materials. Materials 2023, 16, 5872. https://doi.org/10.3390/ma16175872
Wang N, Wang R, Zhang Q, Luo Y, Xu H. Study on the Water-Sensitivity Passivation Effect and Mechanism of PA-ES Composite Materials. Materials. 2023; 16(17):5872. https://doi.org/10.3390/ma16175872
Chicago/Turabian StyleWang, Nan, Runze Wang, Qingzhao Zhang, Yuanjie Luo, and Hui Xu. 2023. "Study on the Water-Sensitivity Passivation Effect and Mechanism of PA-ES Composite Materials" Materials 16, no. 17: 5872. https://doi.org/10.3390/ma16175872
APA StyleWang, N., Wang, R., Zhang, Q., Luo, Y., & Xu, H. (2023). Study on the Water-Sensitivity Passivation Effect and Mechanism of PA-ES Composite Materials. Materials, 16(17), 5872. https://doi.org/10.3390/ma16175872