Large-Scale Fabrication of SiC-TiC@C Powders via Modified Molten Salt Shielding Synthesis Technique and Their Effect on the Properties of Al2O3-MgO Castables
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huo, Y.; Gu, H.; Yang, J.; Huang, A.; Ma, Z. Thickness monitoring and discontinuous degradation mechanism of wear lining refractories for refining ladle. J. Iron Steel Res. Int. 2022, 29, 1110–1118. [Google Scholar] [CrossRef]
- Kumar, S.; Sarkar, R. Alumina-spinel castable for steel ladles: An overview. Int. J. Appl. Ceram. Technol. 2023, 20, 410–423. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, J.; Zhang, Z.; Chen, L.; Ye, G. Preparation and characterization of HA bonded Al2O3-MgO based castables with superior slag resistance for the working lining of Si-killed stainless steel ladles. Ceram. Int. 2022, 48, 18108–18115. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Zhang, L. Enhancing mechanism of improved slag resistance of Al2O3-spinel castables added with pre-synthesized (Al,Cr)2O3 micro-powder. Ceram. Int. 2021, 47, 33322–33329. [Google Scholar] [CrossRef]
- Tang, H.; Li, C.; Gao, J.; Touzo, B.; Liu, C.; Yuan, W. Optimization of properties for alumina-spinel refractory castables by CMA (CaOMgO-Al2O3) aggregates. Materials 2021, 14, 3050. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Huang, M.; Zheng, P.; Hou, Q.; Qi, X.; Li, R.; Chen, L.; Luo, X. Effects of different additives on properties of magnesium aluminate Spinel–ericlase castable. Ceram. Int. 2023, 49, 4412–4421. [Google Scholar] [CrossRef]
- Neto, P.; Pandolfelli, V.C. ZnO and MgO as inducers of spinel-like phase formation on alumina-based castables. J. Eur. Ceram. Soc. 2022, 42, 7335–7342. [Google Scholar]
- Liu, J.; Zhao, L.; Jia, G.; Wang, S.; Cui, J.; Liu, X.; Zhang, S.; Jia, Q. Preparation of resin coated alumina aggregate and its effect on the properties of alumina-spinel castables for purging plugs. Ceram. Int. 2022, 48, 35398–35405. [Google Scholar] [CrossRef]
- Poirier, J.; Prigent, P.; Bouchetou, M.L. Wear mechanisms of Al2O3-MgO spinel-forming refractories used in steel ladle impact pads. Metall. Res. Technol. 2013, 110, 391–404. [Google Scholar] [CrossRef]
- Martinez, A.T.; Luz, A.P.; Braulio, M.A.L.; Pandolfelli, V.C. Al2O3-based binders for corrosion resistance optimization of Al2O3-MgAl2O4 and Al2O3-MgO refractory Castables. Ceram. Int. 2015, 41, 9947–9956. [Google Scholar] [CrossRef]
- Sadatomi, Y.; Enomoto, N.; Hojo, J. Corrosion resistance of alumina-magnesia castable to slag in steel ladle lining. J. Ceram. Soc. Jpn. 2011, 119, 916–921. [Google Scholar] [CrossRef]
- Liu, M.; Huang, J.; Meng, H.; Liu, C.; Chen, Z.; Yang, H.; Feng, Z.; Li, X.; Luo, R.; Huang, Z.; et al. A novel approach to prepare ultra-low-carbon MgO-C refractories by using graphite nanoplatelets exfoliated by three-row milling in phenolic resin. J. Eur. Ceram. Soc. 2023, 43, 4198–4208. [Google Scholar] [CrossRef]
- Zhang, S.; Lee, W. Carbon containing castables: Current status and future prospects. Br. Ceram. Soc. 2002, 101, 1–8. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, Y.; Zhang, L.; Laing, X.; Tu, J. Effect of 10000# graphite addition amount on the properties of magnesium castable. Ind. Furn. 2019, 41, 61–63. [Google Scholar]
- Wang, G.; Zhang, S.; Zhang, X.; Wei, Y. Effects of different graphite carbon sources on the performance of MgO-C castables. Refract. Mater. 2012, 46, 417–420. [Google Scholar]
- Zhang, S.; Lee, W.E. Improving the water-wettability and oxidation resistance of graphite using Al2O3/SiO2 sol-gel coatings. J. Eur. Ceram. Soc. 2003, 23, 1215–1221. [Google Scholar] [CrossRef]
- Bi, Y.; Wang, H.; Huang, L.; Wang, J.; Zhang, H.; Zhang, S. In–situ catalytic preparation and characterization of SiC nanofiber coated graphite flake with improved water–wettability. Ceram. Int. 2017, 43, 15755–15761. [Google Scholar] [CrossRef]
- Bi, Y.; Wang, H.; Liu, J.; Wang, M.; Ge, S.; Zhang, H.; Zhang, S. Preparation and oxidation resistance of SiC-coated graphite powders via microwave-assisted molten salt synthesis. Surf. Coat. Technol. 2018, 337, 217–222. [Google Scholar] [CrossRef]
- Masoudifar, S.; Vandchali, M.B.; Fard, F.G.; Nemati, A. Molten salt synthesis of a SiC coating on graphite flakes for application in refractory castables. Ceram. Int. 2016, 42, 11951–11957. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, S.; Lee, W.E. Molten salt synthesis and characterization of SiC coated carbon black particles for refractory castable application. J. Eur. Ceram. Soc. 2013, 33, 2023–2029. [Google Scholar] [CrossRef]
- Behboudi, F.; Kakroudi, M.G.; Vafa, N.P.; Faraji, M.; Milani, S.S. Molten salt synthesis of in-situ TiC coating on graphite flakes. Ceram. Int. 2021, 47, 8161–8168. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S. Low-Temperature Preparation of Titanium Carbide Coatings on Graphite Flakes from Molten Salts. J. Am. Ceram. Soc. 2008, 91, 667–680. [Google Scholar] [CrossRef]
- Yan, M.; Xiong, Q.; Huang, J.; Hou, X.; Zhang, L.; Li, X.; Feng, Z. Molten salt synthesis of titanium carbide using different carbon sources as templates. Ceram. Int. 2021, 47, 17589–17596. [Google Scholar] [CrossRef]
- Zhang, K.; Shi, Z.; Zhang, X.; Zhang, Z.; Ge, B.; Xia, H.; Qiao, G. Molten salt synthesis of continuous tungsten carbide coatings on graphite flakes. Ceram. Int. 2017, 43, 8089–8097. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, S.; Zhang, S.; Cui, J.; Liu, X.; Jia, Q. Preparation of SiC coated graphite flake with much improved performance via a molten salt shielded method. Int. J. Appl. Ceram. Technol. 2022, 19, 1529–1539. [Google Scholar] [CrossRef]
- Zhao, L.; Yin, Y.; Yao, N.; Ma, H.; Zhang, S.; Liu, G.; Jia, Q. Preparation of core-shell SiC@C powder via modified molten salt shielding technique. J. Chin. Ceram. Soc. 2023, 51, 635–640. (In Chinese) [Google Scholar]
- Wang, Z.; Ban, J.; Su, K.; Cheng, H.; Geng, Q.; Wang, H.; Shen, J.; Jia, Q.; Zhang, Z.; Liu, X. Synthesis of photoluminescent polycrystalline SiC nanostructures via a modified molten salt shielded method. Ceram. Int. 2022, 48, 12342–12349. [Google Scholar] [CrossRef]
- Zhao, L.; Yin, Y.; Li, Y.; Ma, H.; Liu, X.; Zhang, S.; Jia, Q. Large-scale fabrication of TiC@C powders and its effect on the properties of Al2O3-MgO-C castables. Int. J. Appl. Ceram. Technol. 2023, 1–9. [Google Scholar] [CrossRef]
- Liu, X.G.; Li, Y.; Sun, J.L.; Zhang, Y.; Yang, Y. Preparation of TiC-SiC composite coatings on graphite flakes and their effects on hydrophilicity and dispersivity. Surf. Coat. Technol. 2019, 357, 706–715. [Google Scholar] [CrossRef]
- Gao, K.; Xiao, G.; Chen, Y.; Ding, D.; Ren, Y. Effect of TiC-SiC coated flake graphite by SHS on the properties of Al2O3–C refractories. J. Iron Steel Res. 2022, 34, 1286–1297. (In Chinese) [Google Scholar]
- Chen, X.; Ren, Y.; Luo, J.; Zhong, X.; Ding, D.; Xiao, G. Self-propagating high-temperature synthesis of TiC-SiC coated flake graphite and its effect on the properties of Al2O3–C refractories. J. Chin. Ceram. Soc. 2021, 49, 800–806. (In Chinese) [Google Scholar]
- Liu, X.; Fechler, N.; Antonietti, M. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem. Soc. Rev. 2013, 42, 8237–8265. [Google Scholar] [CrossRef]
- Badenhorst, H. Microstructure of natural graphite flakes revealed by oxidation: Limitations of XRD and Raman techniques for crystallinity estimates. Carbon 2014, 66, 674–690. [Google Scholar] [CrossRef]
- Zhu, K.; Ma, W.; Wei, K.; Lei, Y.; Dai, Y. Separation mechanism of TiSi2 crystals from a Ti-Si eutectic alloy via directional solidification. J. Alloys Compd. 2018, 750, 102–110. [Google Scholar] [CrossRef]
- Su, K.; Tian, X.; Li, S.; Cui, J.; Liu, X.; Song, B. Green synthesis, formation mechanism and oxidation of Ti3SiC2 powder from bamboo charcoal, Ti and Si. Ceram. Int. 2023, 49, 26428–26439. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yin, Y.; Chen, J.; Kang, X.; Kang, S.; Ma, H.; Zhang, S.; Jia, Q. Large-Scale Fabrication of SiC-TiC@C Powders via Modified Molten Salt Shielding Synthesis Technique and Their Effect on the Properties of Al2O3-MgO Castables. Materials 2023, 16, 5895. https://doi.org/10.3390/ma16175895
Li Y, Yin Y, Chen J, Kang X, Kang S, Ma H, Zhang S, Jia Q. Large-Scale Fabrication of SiC-TiC@C Powders via Modified Molten Salt Shielding Synthesis Technique and Their Effect on the Properties of Al2O3-MgO Castables. Materials. 2023; 16(17):5895. https://doi.org/10.3390/ma16175895
Chicago/Turabian StyleLi, Yong, Yicheng Yin, Jing Chen, Xiaoxu Kang, Shihao Kang, Haoxuan Ma, Shaowei Zhang, and Quanli Jia. 2023. "Large-Scale Fabrication of SiC-TiC@C Powders via Modified Molten Salt Shielding Synthesis Technique and Their Effect on the Properties of Al2O3-MgO Castables" Materials 16, no. 17: 5895. https://doi.org/10.3390/ma16175895
APA StyleLi, Y., Yin, Y., Chen, J., Kang, X., Kang, S., Ma, H., Zhang, S., & Jia, Q. (2023). Large-Scale Fabrication of SiC-TiC@C Powders via Modified Molten Salt Shielding Synthesis Technique and Their Effect on the Properties of Al2O3-MgO Castables. Materials, 16(17), 5895. https://doi.org/10.3390/ma16175895