Sorption Capacity of AlOOH/FeAl2 Composites towards As(V)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Padervand, M.; Gholami, M.R. Removal of toxic heavy metal ions from waste water by functionalized magnetic core–zeolitic shell nanocomposites as adsorbents. Environ. Sci. Pollut. Res. 2013, 20, 3900–3909. [Google Scholar] [CrossRef] [PubMed]
- Chiban, M.; Carja, G.; Lehutu, G.; Sinan, F. Equilibrium and thermodynamic studies for the removal of As(V) ions from aqueous solution using dried plants as adsorbents. Arab. J. Chem. 2016, 9, S988–S999. [Google Scholar] [CrossRef]
- Abdulkhaleq Alalwan, H.; Alminshid, A.H.; Mustafa Mohammed, M.; Mohammed, M.F.; Hatem Shadhar, M. Reviewing of using nanomaterials for wastewater treatment. Pollution 2022, 8, 995–1013. [Google Scholar]
- Ren, X.; Feng, H.; Zhao, M.; Zhou, X.; Zhu, X.; Ouyang, X.; Tang, J.; Li, C.; Wang, J.; Tang, W.; et al. Recent Advances in Thallium Removal from Water Environment by Metal Oxide Material. Int. J. Environ. Res. Public Health 2023, 20, 3829. [Google Scholar] [CrossRef] [PubMed]
- Valles-Aragón, M.C.; Olmos-árquez, M.A.; Llorens, E.; Alarcón-Herrera, M.T. Redox potential and pH behavior effect on arsenic removal from water in a constructed wetland mesocosm. Environ. Prog. Sustain. Energy 2013, 33, 1332–1339. [Google Scholar] [CrossRef]
- Zambrano Guisela, B.; De Almeida Ohana, N.; Duarte Dalvani, S.; Velasco Fermin, G.; HM, L.F.; Luis, N.G. Adsorption of arsenic anions in water using modified lignocellulosic absorbents. Results Eng. 2022, 13, 100340. [Google Scholar] [CrossRef]
- Lizama, A.K.; Fletcher, T.D.; Sun, G. Removal processes for arsenic in constructed wetlands. Chemosphere 2011, 84, 1032–1043. [Google Scholar] [CrossRef]
- Yao, S.; Liu, Z.; Shi, Z. Arsenic removal from aqueous solutions by adsorption onto iron oxide/activated carbon magnetic composite. J. Environ. Health Sci. Eng. 2014, 12, 58. [Google Scholar] [CrossRef]
- Höll, W.; Litter, M.I. Ocurrencia y química del arsénico en aguas. Sumario de tecnologías de remoción de arsénico de aguas. In Tecnologías Económicas Para El Abatimiento de Arsénico En Aguas; Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo; Consejo Nacional de Investigaciones Científicas y Técnicas: Buenos Aires, Argentina, 2010; pp. 17–31. [Google Scholar]
- Baskan, M.B.; Pala, A. A statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate. Desalination 2010, 254, 42–48. [Google Scholar] [CrossRef]
- Sarkar, A.; Paul, B. The global menace of arsenic and its conventional remediation—A critical review. Chemosphere 2016, 158, 37–49. [Google Scholar] [CrossRef]
- Zemskova, L.A.; Voit, A.V.; Shlyk, D.K.; Barinov, N.N. Carbon fibers modified with molybdenum for sorption of arsenic(V). Russ. J. Appl. Chem. 2016, 89, 592–596. [Google Scholar] [CrossRef]
- Pillai, P.; Kakadiya, N.; Timaniya, Z.; Dharaskar, S.; Sillanpaa, M. Removal of arsenic using iron oxide amended with rice husk nanoparticles from aqueous solution. Mater. Today Proc. 2020, 28, 830–835. [Google Scholar] [CrossRef]
- Goswami, A.; Raul, P.K.; Purkait, M.K. Arsenic adsorption using copper (II) oxide nanoparticles. Chem. Eng. Res. Des. 2012, 90, 1387–1396. [Google Scholar] [CrossRef]
- Awual, M.R.; Shenashen, M.A.; Yaita, T.; Shiwaku, H.; Jyo, A. Efficient arsenic (V) removal from water by ligand exchange fibrous adsorbent. Water Res. 2012, 46, 5541–5550. [Google Scholar] [CrossRef]
- Wan, W.; Pepping, T.J.; Banerji, T.; Chaudhari, S.; Giammar, D.E. Effects of water chemistry on arsenic removal from drinking water by electrocoagulation. Water Res. 2011, 45, 384–392. [Google Scholar] [CrossRef]
- Saitua, H.; Gil, R.; Padilla, A.P. Experimental investigation on arsenic removal with a nanofiltration pilot plant from naturally contaminated groundwater. Desalination 2011, 274, 1–6. [Google Scholar] [CrossRef]
- Zhang, G.; Li, X.; Wu, S.; Gu, P. Effect of source water quality on arsenic (V) removal from drinking water by coagulation/microfiltration. Environ. Earth Sci. 2012, 66, 1269–1277. [Google Scholar] [CrossRef]
- Yao, R.; Yang, H. An overview of As (V) removal from water by adsorption technology. Ann. Musculoskelet. Med. 2020, 4, 015–020. [Google Scholar]
- Kim, Y.; Kim, C.; Choi, I.; Rengaraj, S.; Yi, J. Arsenic removal using mesoporous alumina prepared via a templating method. Environ. Sci. Technol. 2004, 38, 924–931. [Google Scholar] [CrossRef]
- Pena, M.; Meng, X.G.; Korfiatis, G.P.; Jing, C.Y. Adsorption mechanism of arsenic on nanocrystalline titanium dioxide. Environ. Sci. Technol. 2006, 40, 1257–1262. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, Q.; Gao, S.; Shang, J.K. Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: Part A. Adsorption capacity and mechanism. Chem. Eng. J. 2012, 185, 127–135. [Google Scholar] [CrossRef]
- Bae, J.; Kim, S.; Kim, K.S.; Hwang, H.K.; Choi, H. Adsorptive removal of arsenic by mesoporous iron oxide in aquatic systems. Water 2020, 12, 3147. [Google Scholar] [CrossRef]
- Banerjee, K.; Amy, G.L.; Prevost, M.; Nour, S.; Jekel, M.; Gallagher, P.M.; Blumenschein, C.D. Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide (GFH). Water Res. 2008, 42, 3371–3378. [Google Scholar] [CrossRef]
- Ruiping, L.; Lihua, S.; Jiuhui, Q.; Guibai, L. Arsenic removal through adsorption, sand filtration and ultrafiltration: In situ precipitated ferric and manganese binary oxides as adsorbents. Desalination 2009, 249, 1233–1237. [Google Scholar] [CrossRef]
- Habuda-Stanić, M.; Kalajdžić, B.; Kuleš, M.; Velić, N. Arsenite and arsenate sorption by hydrous ferric oxide/polymeric material. Desalination 2008, 229, 1–9. [Google Scholar] [CrossRef]
- Alchouron, J.; Navarathna, C.; Chludil, H.D.; Dewage, N.B.; Perez, F.; Pittman, C.U., Jr.; Vega, A.S.; Mlsna, T.E. Assessing South American Guadua chacoensis bamboo biochar and Fe3O4 nanoparticle dispersed analogues for aqueous arsenic (V) remediation. Sci. Total Environ. 2020, 706, 135943. [Google Scholar] [CrossRef]
- Ha, H.T.; Phong, P.T.; Minh, T.D. Synthesis of iron oxide nanoparticle functionalized activated carbon and its applications in arsenic adsorption. J. Anal. Methods Chem. 2021, 2021, 6668490. [Google Scholar] [CrossRef]
- Meez, E.; Tolkou, A.K.; Giannakoudakis, D.A.; Katsoyiannis, I.A.; Kyzas, G.Z. Activated Carbons for Arsenic Removal from Natural Waters and Wastewaters: A Review. Water 2021, 13, 2982. [Google Scholar] [CrossRef]
- Svarovskaya, N.; Bakina, O.; Glazkova, E.; Rodkevich, N.; Lerner, M.; Vornakova, E.; Chzhou, V.; Naumova, L. Synthesis of novel hierarchical micro/nanostructures AlOOH/AlFe and their application for As (V) removal. Environ. Sci. Pollut. Res. 2022, 29, 1246–1258. [Google Scholar] [CrossRef]
- Kazantsev, S.O.; Lozhkomoev, A.S.; Rodkevich, N.G. Preparation and adsorption properties of nanostructured composites derived from Al/Fe nanoparticles with respect to arsenic. Nanomaterials 2022, 12, 3177. [Google Scholar] [CrossRef]
- Lerner, M.I.; Pervikov, A.V.; Glazkova, E.A.; Svarovskaya, N.V.; Lozhkomoev, A.S.; Psakhie, S.G. Structures of binary metallic nanoparticles produced by electrical explosion of two wires from immiscible elements. Powder Technol. 2016, 288, 371–378. [Google Scholar] [CrossRef]
- Li, X.; Scherf, A.; Heilmaier, M.; Stein, F. The Al-rich part of the Fe-Al phase diagram. J. Phase Equilibria Diffus. 2016, 37, 162–173. [Google Scholar] [CrossRef]
- Lozhkomoev, A.S.; Kazantsev, S.O.; Lerner, M.I.; Psakhie, S.G. Acid-base and adsorption properties of the AlOOH 2D nanostructures as factors for regulating parameters of model biological solutions. Nanotechnol. Russ. 2016, 11, 506–511. [Google Scholar] [CrossRef]
- Shefer, K.I.; Cherepanova, S.V.; Moroz, E.M.; Gerasimov, E.Y.; Tsybulya, S.V. Features of the real structure of pseudoboehmites: Violations of the structure and layer packing caused by crystallization water. J. Struct. Chem. 2010, 51, 132–141. [Google Scholar] [CrossRef]
- Shields, J.E.; Lowell, S.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Kluwer Academic Publisher: Boston, MA, USA, 2004; pp. 43–45. [Google Scholar]
- Alothman, Z.A. A review: Fundamental aspects of silicate mesoporous materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef]
- Azizian, S. Kinetic models of sorption: A theoretical analysis. J. Colloid Interface Sci. 2004, 276, 47–52. [Google Scholar] [CrossRef]
- Lin, X.; Wang, L.; Jiang, S.; Cui, L.; Wu, G. Iron-doped chitosan microsphere for As (III) adsorption in aqueous solution: Kinetic, isotherm and thermodynamic studies. Korean J. Chem. Eng. 2019, 36, 1102–1114. [Google Scholar] [CrossRef]
- Nagy, B.; Mânzatu, C.; Măicăneanu, A.; Indolean, C.; Barbu-Tudoran, L.; Majdik, C. Linear and nonlinear regression analysis for heavy metals removal using Agaricus bisporus macrofungus. Arab. J. Chem. 2017, 10, S3569–S3579. [Google Scholar] [CrossRef]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef]
- Amrhar, O.; Nassali, H.; Elyoubi, M.S. Application of nonlinear regression analysis to select the optimum absorption isotherm for Methylene Blue adsorption onto Natural Illitic Clay. Bull. De La Société R. Des Sci. De Liège 2015, 84, 116–130. [Google Scholar]
- Elmorsi, T.M. Equilibrium isotherms and kinetic studies of removal of methylene blue dye by adsorption onto miswak leaves as a natural adsorbent. J. Environ. Prot. 2011, 2, 817. [Google Scholar] [CrossRef]
- Ho, Y.S.; Chiu, W.T.; Wang, C.C. Regression analysis for the sorption isotherms of basic dyes on sugarcane dust. Bioresour. Technol. 2005, 96, 1285–1291. [Google Scholar] [CrossRef] [PubMed]
- Erdogan, F.O. Freundlich, Langmuir, Temkin and Harkins-Jura isotherms studies of H2 adsorption on porous adsorbents. Chemistry 2019, 13, 129–135. [Google Scholar] [CrossRef]
- Lozhkomoev, A.S.; Lerner, M.I.; Tsukanov, A.A.; Kazantsev, S.O.; Bakina, O.V.; Psakhie, S.G. On the possibility of soft matter nanostructure formation based on mesoporous aluminum hydroxide. Prospects for biomedical applications. Phys. Mesomech. 2017, 20, 134–141. [Google Scholar] [CrossRef]
Sample | Wire Diameter, mm | Wire Length, mm | C, μF | U, kV | P, MPa | |
---|---|---|---|---|---|---|
Fe | Al | |||||
Al90Fe10 | 0.1 | 0.45 | 90 | 3.2 | 31 | 0.3 |
Al80Fe20 | 0.1 | 0.35 | 75 | 2.0 | 27 | 0.3 |
Al70Fe30 | 0.1 | 0.25 | 60 | 1.2 | 25 | 0.3 |
Kinetic Parameters | Reaction Order | |
---|---|---|
I | II | |
AlOOH/FeAl2 (10%) | ||
qe, mg/g | 114.81 | 127.57 |
k | 0.0792 | 0.0009 |
R2 | 0.5516 | 0.9935 |
AlOOH/FeAl2 (20%) | ||
qe, mg/g | 248.79 | 271.11 |
k | 0.1178 | 0.0007 |
R2 | 0.8657 | 0.9969 |
AlOOH/FeAl2 (30%) | ||
qe, mg/g | 248.97 | 274.35 |
k | 0.1124 | 0.0006 |
R2 | 0.8050 | 0.9948 |
Samples | BET Surface Areas (m2/g) | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|---|
qmax (mg/g) | Ka | R2 | Kf | 1/n | R2 | ||
AlOOH/FeAl2 (10%) | 330 | 144.2 | 0.0107 | 0.9828 | 5.51 | 0.54 | 0.9912 |
AlOOH/FeAl2 (20%) | 282 | 313.6 | 0.0275 | 0.9798 | 17.99 | 0.57 | 0.9908 |
AlOOH/FeAl2 (30%) | 255 | 258.9 | 0,0494 | 0.9671 | 27.21 | 0.46 | 0.9775 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazantsev, S.O.; Suliz, K.V.; Rodkevich, N.G.; Lozhkomoev, A.S. Sorption Capacity of AlOOH/FeAl2 Composites towards As(V). Materials 2023, 16, 6057. https://doi.org/10.3390/ma16176057
Kazantsev SO, Suliz KV, Rodkevich NG, Lozhkomoev AS. Sorption Capacity of AlOOH/FeAl2 Composites towards As(V). Materials. 2023; 16(17):6057. https://doi.org/10.3390/ma16176057
Chicago/Turabian StyleKazantsev, Sergey O., Konstantin V. Suliz, Nikolay G. Rodkevich, and Aleksandr S. Lozhkomoev. 2023. "Sorption Capacity of AlOOH/FeAl2 Composites towards As(V)" Materials 16, no. 17: 6057. https://doi.org/10.3390/ma16176057
APA StyleKazantsev, S. O., Suliz, K. V., Rodkevich, N. G., & Lozhkomoev, A. S. (2023). Sorption Capacity of AlOOH/FeAl2 Composites towards As(V). Materials, 16(17), 6057. https://doi.org/10.3390/ma16176057