Metal-Organic Frameworks: Versatile Platforms for Biomedical Innovations
Abstract
:1. Introduction
2. MOFs in Drug Delivery Applications
2.1. pH-Responsive MOFs
2.2. Multi-Stimuli Responsive MOFs
2.3. MOFs in Enhancing Drug Solubility and Bioavailability
2.4. MOFs as Gene Carriers
3. Exploring the Potential of MOFs in Biomolecule Recognition and Sensing
3.1. MOF Structure and Properties for Biomolecule Recognition
MOFs in the Selective Recognition and Sensing of Biomolecules
3.2. Computational and Experimental Approaches in MOF Recognition Studies
3.3. MOFs in Diagnostic Applications for Disease Monitoring and Enzyme Immobilization
3.4. MOFs in Biosensing and Biotechnological Innovations
3.5. MOFs for Cardiac and Cancer Biomarker Detection
3.6. MOFs in Electrochemistry, Small Molecule Sensing, and Mycotoxin Detection
4. MOFs in Biosensing: Challenges and Opportunities for Disease Diagnosis and Monitoring
4.1. Applications of MOFs in Disease Detection
4.2. Development of Electro-Chemiluminescent (ECL) Biosensors
4.3. Advanced Sensor Techniques and Their Applications
4.4. Wearable and Self-Powered Sensors
4.5. Challenges and Future Perspectives
5. Exploring the Potential of MOFs in Biomedical Applications beyond Sensing and Biosensors
5.1. Catalysis and Biomedical Chemistry
5.2. Tissue Engineering and Medical Imaging
5.3. Wound Healing and Bacterial Infections
5.4. Advanced Technologies in Biomedicine
5.5. Immuno-Therapy Interventions
6. Conclusions and Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Awasthi, G.; Shivgotra, S.; Nikhar, S.; Sundarrajan, S.; Ramakrishna, S.; Kumar, P. Progressive Trends on the Biomedical Applications of Metal Organic Frameworks. Polymers 2022, 14, 4710. [Google Scholar] [CrossRef]
- Hu, Y.; Han, R.; Mei, L.; Liu, J.; Sun, J.; Yang, K.; Zhao, J. Design principles of MOF-related materials for highly stable metal anodes in secondary metal-based batteries. Mater. Today Energy 2021, 19, 100608. [Google Scholar] [CrossRef]
- Jung, S.; Chang, S.; Kim, N.; Song, Y.; Kim, J. ZIF-8 Based Active Wound Dressing for pH Modulation and pH-Responsive Delivery of Curcumin and Zn2+: Effect of Acidity on the Drug Release for Antibacterial and Antioxidant Efficacy. Macromol. Mater. Eng. 2023, 2300141. [Google Scholar] [CrossRef]
- Linnane, E.; Haddad, S.; Melle, F.; Mei, Z.; Fairen-Jimenez, D. The uptake of metal–organic frameworks: A journey into the cell. Chem. Soc. Rev. 2022, 51, 6065–6086. [Google Scholar] [CrossRef]
- Lin, Y.S.; Lin, K.S.; Mdlovu, N.V.; Weng, M.T.; Tsai, W.C.; Jeng, U.S. De novo synthesis of a MIL-125(Ti) carrier for thermal- and pH-responsive drug release. Biomater. Adv. 2022, 140, 213070. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.; Dong, M.; Zhao, T. Advances in Metal-Organic Frameworks MIL-101(Cr). Int. J. Mol. Sci. 2022, 23, 9396. [Google Scholar] [CrossRef] [PubMed]
- Karimi Alavijeh, R.; Akhbari, K. Biocompatible MIL-101(Fe) as a Smart Carrier with High Loading Potential and Sustained Release of Curcumin. Inorg. Chem. 2020, 59, 3570–3578. [Google Scholar] [CrossRef]
- Cases Diaz, J.; Lozano-Torres, B.; Gimenez-Marques, M. Boosting Protein Encapsulation through Lewis-Acid-Mediated Metal−Organic Framework Mineralization: Toward Effective Intracellular Delivery. Chem. Mater. 2022, 34, 7817–7827. [Google Scholar] [CrossRef]
- Pederneira, N.; Newport, K.; Lawson, S.; Rownaghi, A.A.; Rezaei, F. Drug Delivery on Mg-MOF-74: The Effect of Drug Solubility on Pharmacokinetics. ACS Appl. Bio Mater. 2023, 6, 2477–2486. [Google Scholar] [CrossRef]
- Truong, T.; Hoang, T.M.; Nguyen, C.K.; Huynh, Q.T.N.; Phan, N.T.S. Expanding applications of zeolite imidazolate frameworks in catalysis: Synthesis of quinazolines using ZIF-67 as an efficient heterogeneous catalyst. RSC Adv. 2015, 5, 24769–24776. [Google Scholar] [CrossRef]
- Far, B.F.; Naimi-Jamal, M.R.; Daneshgar, H.; Rabiee, N. Co-delivery of doxorubicin/sorafenib by DNA-decorated green ZIF-67-based nanocarriers for chemotherapy and hepatocellular carcinoma treatment. Environ. Res. 2023, 225, 115589. [Google Scholar] [CrossRef]
- Abubakar, A.; Abdulmalek, E.; Ibrahim, W.N.W.; Cordova, K.E.; Rahman, M.B.A. ZIF-90 nanoparticles modified with a homing peptide for targeted delivery of cisplatin. Front. Chem. 2022, 10, 1076350. [Google Scholar] [CrossRef]
- Zhuang, Y. Zirconium-Based Metal-Organic Frameworks as Drug Delivery Systems; University of Cambridge: Cambridge, UK, 2023. [Google Scholar]
- He, Y.; Li, D.; Wu, L.; Yin, X.; Zhang, X.; Patterson, L.H.; Zhang, J. Metal-Organic Frameworks for Gene Therapy and Detection. Adv. Funct. Mater. 2023, 33, 2212277. [Google Scholar] [CrossRef]
- Chen, G.; Luo, J.; Cai, M.; Qin, L.; Wang, Y.; Gao, L.; Huang, P.; Yu, Y.; Ding, Y.; Dong, X.; et al. Investigation of Metal-Organic Framework-5 (MOF-5) as an Antitumor Drug Oridonin Sustained Release Carrier. Molecules 2019, 24, 3369. [Google Scholar] [CrossRef]
- Gao, Q.; Bai, Q.; Zheng, C.; Sun, N.; Liu, J.; Chen, W.; Hu, F.; Lu, T. Application of Metal–Organic Framework in Diagnosis and Treatment of Diabetes. Biomolecules 2022, 12, 1240. [Google Scholar] [CrossRef] [PubMed]
- Adeel, M.; Asif, K.; Rahman, M.; Daniele, S.; Canzonieri, V.; Rizzolio, F. Glucose Detection Devices and Methods Based on Metal–Organic Frameworks and Related Materials. Adv. Funct. Mater. 2021, 31, 2106023. [Google Scholar] [CrossRef]
- Hosono, N.; Uemura, T. Metal-Organic Frameworks for Macromolecular Recognition and Separation. Matter 2020, 3, 652–663. [Google Scholar] [CrossRef]
- di Nunzio, M.R.; Caballero-Mancebo, E.; Cohen, B.; Douhal, A. Photodynamical behaviour of MOFs and related composites: Relevance to emerging photon-based science and applications. J. Photochem. Photobiol. C Photochem. Rev. 2020, 44, 100355. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Z.; Pan, Z.; Liu, Y. Advanced bioactive nanomaterials for biomedical applications. Exploration 2021, 1, 20210089. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Wang, Y.; Tan, R.; Li, H.; Tu, Y. Determination of beta-amyloid oligomer using electrochemiluminescent aptasensor with signal enhancement by AuNP/MOF nanocomposite. Mikrochim. Acta 2021, 188, 53. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Zhang, W.; Yu, S.; Xia, S.-L.; Liu, Y.-N.; Yang, G.-J. Application of MOF-based nanotherapeutics in light-mediated cancer diagnosis and therapy. J. Nanobiotechnol. 2022, 20, 421. [Google Scholar] [CrossRef]
- Ni, K.; Luo, T.; Nash, G.T.; Lin, W. Nanoscale Metal–Organic Frameworks for Cancer Immunotherapy. Accounts Chem. Res. 2020, 53, 1739–1748. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef]
- Liu, J.; Wen, Q.; Zhou, B.; Yuan, C.; Du, S.; Li, L.; Jiang, L.; Yao, S.Q.; Ge, J. “Clickable” ZIF-8 for Cell-Type-Specific Delivery of Functional Proteins. ACS Chem. Biol. 2022, 17, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, S.J.; Samanta, A.; Mir, M.H.; Dutta, B. Metal-Organic Frameworks (MOFs): A Promising Candidate for Stimuli-Responsive Drug Delivery. ES Mater. Manuf. 2022, 19, 792. [Google Scholar] [CrossRef]
- Cai, M.; Ni, B.; Hu, X.; Wang, K.; Yin, D.; Chen, G.; Fu, T.; Zhu, R.; Dong, X.; Qu, C.; et al. An investigation of IRMOF-16 as a pH-responsive drug delivery carrier of curcumin. J. Sci. Adv. Mater. Devices 2022, 7, 100507. [Google Scholar] [CrossRef]
- Du, J.; Chen, G.; Yuan, X.; Yuan, J.; Li, L. Multi-stimuli responsive Cu-MOFs@Keratin drug delivery system for chemodynamic therapy. Front. Bioeng. Biotechnol. 2023, 11, 1125348. [Google Scholar] [CrossRef]
- Akbar, M.U.; Khattak, S.; Ihsanullah Khan, M.; Saddozai, U.A.K.; Ali, N.; AlAsmari, A.F.; Zaheer, M.; Badar, M. A pH-responsive bi-MIL-88B MOF coated with folic acid-conjugated chitosan as a promising nanocarrier for targeted drug delivery of 5-Fluorouracil. Front. Pharmacol. 2023, 14, 1265440. [Google Scholar] [CrossRef]
- Liu, B.; Liu, X.; Zhang, X.; Wu, X.; Li, C.; Sun, Z.; Chu, H. Facile synthesis of degradable DOX/ICG co-loaded metal–organic frameworks for targeted drug release and thermoablation. Cancer Nanotechnol. 2022, 13, 18. [Google Scholar] [CrossRef]
- Trushina, D.B.; Sapach, A.Y.; Burachevskaia, O.A.; Medvedev, P.V.; Khmelenin, D.N.; Borodina, T.N.; Soldatov, M.A.; Butova, V.V. Doxorubicin-Loaded Core-Shell UiO-66@SiO2 Metal-Organic Frameworks for Targeted Cellular Uptake and Cancer Treatment. Pharmaceutics 2022, 14, 1325. [Google Scholar] [CrossRef] [PubMed]
- Safinejad, M.; Rigi, A.; Zeraati, M.; Heidary, Z.; Jahani, S.; Chauhan, N.P.S.; Sargazi, G. Lanthanum-based metal organic framework (La-MOF) use of 3,4-dihydroxycinnamic acid as drug delivery system linkers in human breast cancer therapy. BMC Chem. 2022, 16, 93. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Liu, C.; Wu, Q.; Zhou, J.; Xu, X.; Zhang, L.; Wang, D.; Yang, F.; Zhang, H. Mineralization of pH-Sensitive Doxorubicin Prodrug in ZIF-8 to Enable Targeted Delivery to Solid Tumors. Anal. Chem. 2020, 92, 11453–11461. [Google Scholar] [CrossRef]
- Ma, A.; Zhang, R. Facile synthesis of redox-responsive paclitaxel drug release platform using metal-organic frameworks (ZIF-8) for gastric cancer treatment. Mater. Res. Express 2020, 7, 095402. [Google Scholar] [CrossRef]
- Sun, Q.; Bi, H.; Wang, Z.; Li, C.; Wang, X.; Xu, J.; Zhu, H.; Zhao, R.; He, F.; Gai, S.; et al. Hyaluronic acid-targeted and pH-responsive drug delivery system based on metal-organic frameworks for efficient antitumor therapy. Biomaterials 2019, 223, 119473. [Google Scholar] [CrossRef]
- Suresh, K.; Matzger, A.J. Enhanced Drug Delivery by Dissolution of Amorphous Drug Encapsulated in a Water Unstable Metal–Organic Framework (MOF). Angew. Chem. Int. Ed. 2019, 131, 16946–16950. [Google Scholar] [CrossRef]
- Liu, C. Stimuli-Responsive Porous Nanomaterials for Controlled Drug Delivery and Gene Therapy; Åbo Akademi University: Turku, Finland, 2022. [Google Scholar]
- Hassanpour, S.; Niaei, N.; Petr, J. Metal–Organic Frameworks-Based Analytical Devices for Chiral Sensing and Separations: A Review (2012–2022). Chemosensors 2023, 11, 29. [Google Scholar] [CrossRef]
- Pashazadeh-Panahi, P.; Belali, S.; Sohrabi, H.; Oroojalian, F.; Hashemzaei, M.; Mokhtarzadeh, A.; de la Guardia, M. Metal-organic frameworks conjugated with biomolecules as efficient platforms for development of biosensors. TrAC Trends Anal. Chem. 2021, 141, 116285. [Google Scholar] [CrossRef]
- Feng, L.; Day, G.S.; Wang, K.-Y.; Yuan, S.; Zhou, H.-C. Strategies for Pore Engineering in Zirconium Metal-Organic Frameworks. Chem 2020, 6, 2902–2923. [Google Scholar] [CrossRef]
- Luo, R.; Xu, C.-G.; Yu, H.-J.; Wu, R.-X.; Lu, P.; Fan, Y.-H.; Shao, F. A novel Co(ii)-based MOF with selective fluorescence as a turn-on sensor for biomarker methylmalonic acid. CrystEngComm 2023, 25, 4120–4125. [Google Scholar] [CrossRef]
- Chakraborty, D.; Bej, S.; Chatterjee, R.; Banerjee, P.; Bhaumik, A. A new phosphonate based Mn-MOF in recognising arginine over lysine in aqueous medium and other bio-fluids with “Sepsis” disease remediation. Chem. Eng. J. 2022, 446, 136916. [Google Scholar] [CrossRef]
- Mostafavi, M.; Tanreh, S.; Astaraki, M.; Farjah, B.; Rasoolidanesh, M.; Rezvani, M.; Ganji, M.D. Dispersion-corrected DFT investigations on the interaction of glycine amino acid with metal organic framework MOF-5. Phys. B Condens. Matter 2021, 626, 413446. [Google Scholar] [CrossRef]
- Liao, X.; Zhang, X.; Wang, W.; Liu, C.; Yang, W.; Wang, D. Nanobody@Biomimetic mineralized MOF as a sensing immunoprobe in detection of aflatoxin B1. Biosens. Bioelectron. 2023, 15, 114906. [Google Scholar] [CrossRef]
- Shortall, K.; Otero, F.; Bendl, S.; Soulimane, T.; Magner, E. Enzyme Immobilization on Metal Organic Frameworks: The Effect of Buffer on the Stability of the Support. Langmuir 2022, 38, 13382–13391. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Li, N.; Zhong, X.; Jiang, Y. Metal-Organic Frameworks: A Potential Platform for Enzyme Immobilization and Related Applications. Front. Bioeng. Biotechnol. 2020, 8, 695. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, C.; Wu, Y.; Luo, C.; Zhan, D.; Wang, S. Electrochemical Enzyme Sensor Based on the Two-Dimensional Metal–Organic Layers Supported Horseradish Peroxidase. Molecules 2022, 27, 8599. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Liu, Y.; Cheng, L.; Yang, C.; Zhang, J. Photoelectrochemical Aptasensing of Kanamycin Using Visible Light-Activated Carbon Nitride and Graphene Oxide Nanocomposites. Anal. Chem. 2014, 86, 9372–9375. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Che, J.; Jiang, X.; Fan, Y.; Gao, D.; Bi, J.; Ning, Z. A Novel Turn-On Fluorescence Probe Based on Cu(II) Functionalized Metal–Organic Frameworks for Visual Detection of Uric Acid. Molecules 2022, 27, 4803. [Google Scholar] [CrossRef]
- Wang, X.; Batra, K.; Clavier, G.; Maurin, G.; Ding, B.; Tissot, A.; Serre, C. Ln-MOF Based Ratiometric Luminescent Sensor for the Detection of Potential COVID-19. Chem. A Eur. J. 2023, 24, 12. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Qiu, M.; Xia, Y.; Li, W.; Tao, Y.; Liu, S.; Li, S.; Xiao, W.; Zhang, Y.; Yuan, H. Highly selective and sensitive fluorescent biosensor for the detection of serotonin and its metabolite by Eu3+-Doped Metal-Organic framework. Chem. Eng. J. 2022, 442, 136272. [Google Scholar] [CrossRef]
- Cedrún-Morales, M.; Ceballos, M.; Polo, E.; del Pino, P.; Pelaz, B. Nanosized metal–organic frameworks as unique platforms for bioapplications. Chem. Commun. 2023, 59, 2869–2887. [Google Scholar] [CrossRef]
- Yu, K.; Li, M.; Chai, H.; Liu, Q.; Hai, X.; Tian, M.; Qu, L.; Xu, T.; Zhang, G.; Zhang, X. MOF-818 nanozyme-based colorimetric and electrochemical dual-mode smartphone sensing platform for in situ detection of H2O2 and H2S released from living cells. Chem. Eng. J. 2023, 451, 13321. [Google Scholar] [CrossRef]
- Wu, Y.; Tang, M.; Wang, Z.; Shi, L.; Xiong, Z.; Chen, Z.; Sessler, J.L.; Huang, F. Pillararene incorporated metal–organic frameworks for supramolecular recognition and selective separation. Nat. Commun. 2023, 14, 4927. [Google Scholar] [CrossRef]
- Bunzen, H.; Jirak, D. Recent Advances in Metal-Organic Frameworks for Applications in Magnetic Resonance Imaging. ACS Appl. Mater. Interfaces 2022, 14, 50445–50462. [Google Scholar] [CrossRef] [PubMed]
- Saeidi, M.; Amidian, M.A.; Sheybanikashani, S.; Mahdavi, H.; Alimohammadi, H.; Syedmoradi, L.; Mohandes, F.; Zarrabi, A.; Tamjid, E.; Omidfar, K.; et al. Multilayered Mesoporous Composite Nanostructures for Highly Sensitive Label-Free Quantification of Cardiac Troponin-I. Biosensors 2022, 12, 337. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Chen, W.; Wang, J.; Cai, W.; Kong, S.; Wu, C. Folic acid-functionalized zirconium metal-organic frameworks based electrochemical impedance biosensor for the cancer cell detection. Sens. Actuators B Chem. 2019, 301, 127073. [Google Scholar] [CrossRef]
- Dourandish, Z.; Beitollahi, H.; Sheikhshoaie, I. Simultaneous Voltammetric Determination of Epinine and Venlafaxine Using Disposable Screen-Printed Graphite Electrode Modified by Bimetallic Ni-Co-Metal–Organic-Framework Nanosheets. Molecules 2023, 28, 2128. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Lustig, W.P.; Zhang, J.; Zheng, C.; Wang, H.; Teat, S.J.; Gong, Q.; Rudd, N.D.; Li, J. Effective Detection of Mycotoxins by a Highly Luminescent Metal–Organic Framework. J. Am. Chem. Soc. 2015, 137, 16209–16215. [Google Scholar] [CrossRef]
- Cunha-Silva, H.; Arcos-Martinez, M.J. Dual range lactate oxidase-based screen printed amperometric biosensor for analysis of lactate in diversified samples. Talanta 2018, 188, 779–787. [Google Scholar] [CrossRef]
- Gupta, A.; Sharma, S.K.; Pachauri, V.; Ingebrandt, S.; Singh, S.; Sharma, A.L.; Deep, A. Sensitive impedimetric detection of troponin I with metal–organic framework composite electrode. RSC Adv. 2021, 11, 2167–2174. [Google Scholar] [CrossRef]
- Yan, M.; Ye, J.; Zhu, Q.; Zhu, L.; Huang, J.; Yang, X. Ultrasensitive Immunosensor for Cardiac Troponin I Detection Based on the Electrochemiluminescence of 2D Ru-MOF Nanosheets. Anal. Chem. 2019, 91, 10156–10163. [Google Scholar] [CrossRef]
- Moghzi, F.; Soleimannejad, J.; Sañudo, E.C.; Janczak, J. Dopamine Sensing Based on Ultrathin Fluorescent Metal–Organic Nanosheets. ACS Appl. Mater. Interfaces 2020, 12, 44499–44507. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Yin, Y.; Gu, R.; Xu, J.; Su, X.; Wang, Y.; Liu, R.; Liu, X.; Huang, J. Label-free and highly selective MOFs-based dopamine detection in urine of Parkinson’s patients. Chem. Eng. J. 2022, 443, 136371. [Google Scholar] [CrossRef]
- Lv, X.; Li, Y.; Cui, B.; Fang, Y.; Wang, L. Electrochemiluminescent sensor based on an aggregation-induced emission probe for bioanalytical detection. Analyst 2022, 147, 2338–2354. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, R.; Shen, B.; Li, C.; Chen, J.; Wang, Y.; Tian, S.; Li, X.; Luo, N.; Liu, R.; et al. Electrochemiluminescent (ECL) biosensor for Burkholderia pseudomallei based on cobalt-doped MOF decorated with gold nanoparticles and N-(4-aminobutyl)-N-(ethylisoluminol). Microchim. Acta 2022, 189, 355. [Google Scholar] [CrossRef]
- Wang, L.; Wen, L.; Zheng, S.; Tao, F.; Chao, J.; Wang, F.; Li, C. Integrating peroxidase-mimicking NH2-MIL-101(Fe) with molecular imprinting for high-performance ratiometric fluorescence sensing of domoic acid. Sens. Actuators B Chem. 2022, 361, 131688. [Google Scholar] [CrossRef]
- Ji, L.; Wang, Q.; Gong, X.; Chen, J.; Zhu, X.; Li, Z.; Hu, P. Ultrasensitive and Simple Dopamine Electrochemical Sensor Based on the Synergistic Effect of Cu-TCPP Frameworks and Graphene Nanosheets. Molecules 2023, 28, 2687. [Google Scholar] [CrossRef]
- Rayegani, A.; Saberian, M.; Delshad, Z.; Liang, J.; Sadiq, M.; Nazar, A.M.; Mohsan, S.A.H.; Khan, M.A. Recent Advances in Self-Powered Wearable Sensors Based on Piezoelectric and Triboelectric Nanogenerators. Biosensors 2022, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Qiu, W.; Gao, R.; Wang, Y.; Bai, Y.; Xu, Z.; Bao, S.-J. MIL-47(V) catalytic conversion of H2O2 for sensitive H2O2 detection and tumor cell inhibition. Sens. Actuators B Chem. 2021, 354, 131201. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.J.; Zhang, Q.; Zhang, J.Y.; Zhang, N.; Fang, Y.Z.; Yan, J.; Ke, Q. The multifunctional BODIPY@Eu-MOF nanosheets as bioimaging platform: A ratiometric fluorescencent sensor for highly efficient detection of F-, H2O2 and glucose. Sens. Actuators B Chem. 2022, 354, 131140. [Google Scholar] [CrossRef]
- Singh, R.; Singh, G.; George, N.; Singh, G.; Gupta, S.; Singh, H.; Kaur, G.; Singh, J. Copper-Based Metal–Organic Frameworks (MOFs) as an Emerging Catalytic Framework for Click Chemistry. Catalysts 2023, 13, 130. [Google Scholar] [CrossRef]
- Simms, C.; Mullaliu, A.; Swinnen, S.; de Azambuja, F.; Parac-Vogt, T.N. MOF catalysis meets biochemistry: Molecular insights from the hydrolytic activity of MOFs towards biomolecules. Mol. Syst. Des. Eng. 2022, 8, 270–288. [Google Scholar] [CrossRef]
- Zhu, L.; Li, J.P.H.; Liu, Y.; Lang, J.; Zhang, S.; Hernández, W.Y.; Zhou, W.; Ordomshy, V.; Li, T.; Yang, Y. Active sites behavior on Ru@MIL-101(Cr) catalysts to direct alcohol to acetals conversion, an in situ FT-IR study of n-butanol and butanal. J. Catal. 2022, 416, 301–310. [Google Scholar] [CrossRef]
- Saleh, R.O.; Achmad, H.; Daminov, B.T.; Kzar, H.H.; Mahdi, A.B.; Hammid, A.T.; Abid, M.K.; Opulencia, M.J.C.; Mustafa, Y.F.; Sharma, H. Synthesis of Bioactive Yttrium-Metal–Organic Framework as Efficient Nanocatalyst in Synthesis of Novel Pyrazolopyranopyrimidine Derivatives and Evaluation of Anticancer Activity. Front. Chem. 2022, 10, 928047. [Google Scholar] [CrossRef] [PubMed]
- Melchiorre, M.; Lentini, D.; Cucciolito, M.E.; Taddeo, F.; Hmoudah, M.; Di Serio, M.; Ruffo, F.; Russo, V.; Esposito, R. Sustainable Ketalization of Glycerol with Ethyl Levulinate Catalyzed by the Iron(III)-Based Metal-Organic Framework MIL-88A. Molecules 2022, 27, 7229. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Xu, C.; Dong, X.; Qi, M.; Jiang, D. Exosome-functionalized magnesium-organic framework-based scaffolds with osteogenic, angiogenic and anti-inflammatory properties for accelerated bone regeneration. Bioact. Mater. 2022, 18, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, D.; Zhang, H.; Hu, G.; Guo, B. Recent development of contrast agents for magnetic resonance and multimodal imaging of glioblastoma. J. Nanobiotechnol. 2022, 20, 284. [Google Scholar] [CrossRef]
- Han, M.; Ren, M.; Li, Z.; Qu, L.; Yu, L. A two-dimensional thin Co-MOF nanosheet as a nanozyme with high oxidase-like activity for GSH detection. New J. Chem. 2022, 46, 10682–10689. [Google Scholar] [CrossRef]
- Wang, T.L.; Zhou, Z.F.; Liu, J.F.; Hou, X.D.; Zhou, Z.; Dai, Y.L.; Hou, Y.; Chen, F.; Zheng, L.P. Donut-like MOFs of copper/nicotinic acid and composite hydrogels with superior bioactivity for rh-bFGF delivering and skin wound healing. J. Nanobiotechnol. 2021, 19, 275. [Google Scholar] [CrossRef] [PubMed]
- Sheta, S.M.; Salem, S.R.; El-Sheikh, S.M. A novel Iron(III)-based MOF: Synthesis, characterization, biological, and antimicrobial activity study. J. Mater. Res. 2022, 37, 2356–2367. [Google Scholar] [CrossRef]
- Chen, F.; Luo, Y.; Liu, X.; Zheng, Y.; Han, Y.; Yang, D.; Wu, S. 2D Molybdenum Sulfide-Based Materials for Photo-Excited Antibacterial Application. Adv. Health Mater. 2022, 11, e2200360. [Google Scholar] [CrossRef] [PubMed]
- Mannias, G.; Scano, A.; Pilloni, M.; Magner, E.; Ennas, G. Tailoring MOFs to Biomedical Applications: A Chimera or a Concrete Reality? The Case Study of Fe-BTC by bio-friendly Mechanosynthesis. Comments Inorg. Chem. 2022, 1–21. [Google Scholar] [CrossRef]
- Falahati, M.; Sharifi, M.; Ten Hagen, T.L. Explaining chemical clues of metal organic framework-nanozyme nano-/micro-motors in targeted treatment of cancers: Benchmarks and challenges. J. Nanobiotechnol. 2022, 20, 153. [Google Scholar] [CrossRef] [PubMed]
- Koshy, M.; Spiotto, M.; Feldman, L.E.; Luke, J.J.; Fleming, G.F.; Olson, D.; Moroney, J.W.; Nanda, R.; Rosenberg, A.; Pearson, A.T.; et al. A phase 1 dose-escalation study of RiMO-301 with palliative radiation in advanced tumors. J. Clin. Oncol. 2023, 41, 2527. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, Z.; Wang, N.; Chen, X.; Sun, X.; Cheng, Y. Hafnium-Based Metal–Organic Framework Nanoparticles as a Radiosensitizer to Improve Radiotherapy Efficacy in Esophageal Cancer. ACS Omega 2022, 7, 12021–12029. [Google Scholar] [CrossRef] [PubMed]
No Crt | MOF-Type | Pore Proprieties | Specific Surface by BET [m²/g] | Characteristics | Particularities for Medical Applications | |
---|---|---|---|---|---|---|
Window Size [nm] | Pore Size [nm] | |||||
1 | ZIF-8 | 0.34 | 1.1 | 1500 | Stable in air, aqueous, and basic solution; not stable in acid solution | pH-Responsive Drug Release [3] |
2 | UiO-66 | 0.8 | 1.1 | 1000 | Stable in aqueous and acid solution | Targeted Cellular Uptake [4], high biocompatibility |
3 | MIL-125 (Ti) | 0.6 | 0.8 | 1300 | 500 nm–5 µm Irregular crystal | Temperature and pH-Responsive Release [5] |
4 | MIL-101 (Cr) | 1.2–1.6 | 2.9–3.4 | 2800–3200 | Stable in air, aqueous, acid, and basic solution (pH 1–12) | Drug delivery [6] |
5 | MIL-101 (Fe) | 1.2 | 2.3–2.7 | 2800 | High surface area, tunable pores | pH-responsive drug release [7] |
6 | MIL-100 (Fe) | 0.55–0.88 | 2.5–2.9 | 1900 | Stable in air, aqueous, and acid solution | Targeted drug delivery, protein encapsulation [8] |
7 | MOF-74 (Mg) | 1.5 | 900 | Open metal sites, tunable porosity | Drug delivery [9] | |
8 | ZIF-67 (Co) | 0.34 | 1.1 | 1500 | Stable in air, aqueous, and basic solution; not stable in acid solution | Catalysis in drug synthesis [10], targeted release [11] |
9 | ZIF-90 (Zn) | 0.35 | 1.1 | 1200 | Stable in air, aqueous, and basic solution; not stable in acid solution | Targeted drug delivery [12] |
10 | NU-1000 (Zr) | 0.8 × 1.0 | 3.1 and 1.3 | 2200 | Stable in aqueous and acid solution and organic solvents | Drug delivery [13], targeted therapy [14] |
11 | MOF-5 | - | 1.5 | 900 | Stable in the air for several weeks | Drug Sustained Release Carrier [15] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Păun, C.; Motelică, L.; Ficai, D.; Ficai, A.; Andronescu, E. Metal-Organic Frameworks: Versatile Platforms for Biomedical Innovations. Materials 2023, 16, 6143. https://doi.org/10.3390/ma16186143
Păun C, Motelică L, Ficai D, Ficai A, Andronescu E. Metal-Organic Frameworks: Versatile Platforms for Biomedical Innovations. Materials. 2023; 16(18):6143. https://doi.org/10.3390/ma16186143
Chicago/Turabian StylePăun, Cătălin, Ludmila Motelică, Denisa Ficai, Anton Ficai, and Ecaterina Andronescu. 2023. "Metal-Organic Frameworks: Versatile Platforms for Biomedical Innovations" Materials 16, no. 18: 6143. https://doi.org/10.3390/ma16186143
APA StylePăun, C., Motelică, L., Ficai, D., Ficai, A., & Andronescu, E. (2023). Metal-Organic Frameworks: Versatile Platforms for Biomedical Innovations. Materials, 16(18), 6143. https://doi.org/10.3390/ma16186143