Experimental Study on the Impact of Using FRP Sheets on the Axial Compressive Performance of Short-Circular Composite Columns
Abstract
:1. Introduction
2. Experimental Program
2.1. Specimen Configurations and Material Properties
2.2. Test Setup
2.3. Mechanical Conditions of Composite Columns
3. Experimental Results
3.1. Failure Modes
3.2. Test Phenomenon
3.2.1. Load–Displacement Relationship
3.2.2. Mechanical Characteristics Analysis
3.3. Confinement Mechanism of Composite Columns
- (1)
- Stage I: steel dominating confinement
- (2)
- Stage II: FRP-steel multiple confinements
- (3)
- Stage III: FRP dominating confinement.
- (4)
- Stage IV: steel dominating confinement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lai, M.H.; Ho, J.C.M. A theoretical axial stress-strain model for circular concrete-filled-steel-tube columns. Eng. Struct. 2016, 125, 124–143. [Google Scholar] [CrossRef]
- Dong, C.X.; Kwan, A.K.H.; Ho, J.C.M. Effects of external confinement on structural performance of concrete-filled steel tubes. J. Constr. Steel Res. 2017, 132, 72–82. [Google Scholar] [CrossRef]
- Alatshan, F.; Osman, S.A.; Hamid, R.; Mashiri, F. Stiffened concrete-filled steel tubes: A systematic review. Thin-Walled Struct. 2020, 148, 106590. [Google Scholar] [CrossRef]
- Lai, M.H.; Song, W.; Ou, X.L.; Chen, M.T.; Wang, Q.; Ho, J.C.M. A path dependent stress-strain model for concrete-filled-steel-tube column. Eng. Struct. 2020, 211, 110312. [Google Scholar] [CrossRef]
- Reda, M.A.; Ebid, A.M.; Ibrahim, S.M.; El-Aghoury, M.A. Strength of composite columns consists of welded double CF sigma-sections filled with concrete—An experimental study. Designs 2022, 6, 82. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Wei, Y.; Bai, J.W.; Wu, G.; Dong, Z. A novel seawater and sea sand concrete filled FRP-carbon steel composite tube column: Concept and behaviour. Compos. Struct. 2020, 246, 112421. [Google Scholar] [CrossRef]
- Wang, Y.L.; Chen, G.P.; Wan, B.L.; Han, B.; Ran, J. Axial compressive behavior and confinement mechanism of circular FRP-steel tubed concrete stub columns. Compos. Struct. 2021, 256, 113082. [Google Scholar] [CrossRef]
- Wei, Y.; Zhu, C.; Miao, K.T.; Zheng, K.; Tang, Y. Compressive performance of concrete-filled steel tube columns with in-built seawater and sea sand concrete-filled FRP tubes. Constr. Build. Mater. 2022, 317, 125933. [Google Scholar] [CrossRef]
- Guo, F.; Al-Saadi, S.; Raman, R.K.S.; Zhao, X.L. Durability of fiber reinforced polymer (FRP) in simulated seawater sea sand concrete (SWSSC) environment. Corros. Sci. 2018, 141, 1–13. [Google Scholar] [CrossRef]
- Miao, K.T.; Wei, Y.; Dong, F.H.; Zheng, K.; Wang, J. Experimental study on concrete-filled steel tube columns with inner distributed seawater and sea sand concrete-filled fiber-reinforced polymer tubes under axial compression. Compos. Struct. 2023, 320, 117181. [Google Scholar] [CrossRef]
- Cao, S.; Wu, C.Q.; Wang, W.Q. Behavior of FRP confined UHPFRC-filled steel tube columns under axial compressive loading. J. Build. Eng. 2020, 32, 101511. [Google Scholar] [CrossRef]
- Liang, J.F.; Lin, S.Q.; Li, W.; Liu, D. Axial compressive behavior of recycled aggregate concrete-filled square steel tube stub columns strengthened by CFRP. Structures 2021, 29, 1874–1881. [Google Scholar] [CrossRef]
- Zeng, J.J.; Liang, S.D.; Li, Y.L.; Guo, Y.C.; Shan, G.Y. Compressive behavior of FRP-confined elliptical concrete-filled high-strength steel tube columns. Compos. Struct. 2021, 266, 113808. [Google Scholar] [CrossRef]
- Eilbeigi, S.; Tavakkolizadeh, M.; Masoodi, A.R. Nonlinear Regression Prediction of Mechanical Properties for SMA-Confined Concrete Cylindrical Specimens. Buildings 2022, 13, 112. [Google Scholar] [CrossRef]
- Eilbeigi, S.; Tavakkolizadeh, M.; Masoodi, A.R. Enhancing Mechanical Behavior and Energy Dissipation in Fiber-Reinforced Polymers through Shape Memory Alloy Integration: A Numerical Study on SMA-FRP Composites under Cyclic Tensile Loading. Materials 2023, 16, 5695. [Google Scholar] [CrossRef]
- Tavakol, M.; HajiKazemi, H.; Rajabzadeh-Safaei, N.; Masoodi, A.R. Influence of shape memory alloy on seismic behaviour of hollow-section concrete columns. Proc. Inst. Civ. Eng. Struct. Build. 2021, 1–18. [Google Scholar] [CrossRef]
- Wei, Y.; Bai, J.W.; Zhang, Y.R.; Miao, K.; Zheng, K. Compressive performance of high-strength seawater and sea sand concrete-filled circular FRP-steel composite tube columns. Eng. Struct. 2021, 240, 112357. [Google Scholar] [CrossRef]
- Tang, H.Y.; Chen, J.L.; Fan, L.Y.; Sun, X.; Peng, C. Experimental investigation of FRP-confined concrete-filled stainless steel tube stub columns under axial compression. Thin-Walled Struct. 2020, 146, 106483. [Google Scholar] [CrossRef]
- Li, Y.L.; Zhao, X.L.; Raman, R.K.S. Durability of seawater and sea sand concrete and seawater and sea sand concrete-filled fibre-reinforced polymer/stainless steel tubular stub columns. Adv. Struct. Eng. 2021, 24, 1074–1089. [Google Scholar] [CrossRef]
- Aziz, Y.H.A.; Zaher, Y.A.; Wahab, M.A.; Khalaf, M. Predicting temperature rise in Jacketed concrete beams subjected to elevated temperatures. Constr. Build. Mater. 2019, 227, 116460. [Google Scholar] [CrossRef]
- Tao, Z.; Han, L.H.; Zhuang, J.P. Axial loading behavior of CFRP strengthened concrete-filled steel tubular stub columns. Adv. Struct. Eng. 2007, 10, 37–46. [Google Scholar] [CrossRef]
- Liu, L.; Lu, Y.Y. Axial Bearing Capacity of Short FRP Confined Concrete-filled Steel Tubular Columns. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2010, 25, 454–458. [Google Scholar] [CrossRef]
- Hu, Y.M.; Yu, T.; Teng, J.G. FRP-Confined Circular Concrete-Filled Thin Steel Tubes under Axial Compression. J. Compos. Constr. 2011, 15, 850–860. [Google Scholar] [CrossRef]
- Na, L.; Yiyan, L.; Shan, L.; Lan, L. Slenderness effects on concrete-filled steel tube columns confined with CFRP. J. Constr. Steel Res. 2018, 143, 110–118. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Wei, Y.; Bai, J.W.; Zhang, Y. Stress-strain model of an FRP-confined concrete filled steel tube under axial compression. Thin-Walled Struct. 2019, 142, 149–159. [Google Scholar] [CrossRef]
- Onyelowe, K.C.; Jayabalan, J.; Ebid, A.M.; Samui, P.; Singh, R.P.; Soleymani, A.; Jahangir, H. Evaluation of the Compressive Strength of CFRP-Wrapped Circular Concrete Columns Using Artificial Intelligence Techniques. Designs 2022, 6, 112. [Google Scholar] [CrossRef]
- Onyelowe, K.C.; Ebid, A.M.; Mahdi, H.A.; Soleymani, A.; Jayabalan, J.; Jahangir, H.; Samui, P.; Singh, R.P. Modeling the confined compressive strength of CFRP-jacketed noncircular concrete columns using artificial intelligence techniques. Cogent Eng. 2022, 9, 2122156. [Google Scholar] [CrossRef]
- Han, L.H.; Yao, G.H.; Zhao, X.L. Behavior and calculation on concrete-filled steel CHS (Circular Hollow Section) beam-columns. Steel Compos. Struct. Int. J. 2004, 4, 169–188. [Google Scholar] [CrossRef]
Category | Specimen No. | FRP Category | Number of FRP Layer | The Total Thickness of FRP Layer/mm |
---|---|---|---|---|
Reference column | N1 | N/A | 0 | 0 |
N2 | N/A | 0 | 0 | |
N3 | N/A | 0 | 0 | |
composite column | CC1 | CFRP | 1 | 0.167 |
CC2 | CFRP | 2 | 0.334 | |
CC3 | CFRP | 3 | 0.501 | |
CB1 | BFRP | 1 | 0.167 | |
CB2 | BFRP | 2 | 0.334 | |
CB3 | BFRP | 3 | 0.501 |
Young’s Moduli/MPa | Tensile Strength/MPa | |
---|---|---|
CFRP | 1.67 × 105 | 4101.0 (on average) |
BFRP | 9.24 × 104 | 2005.1 (on average) |
Steel | 1.98 × 105 | 550 |
Specimen No. | Extreme Load/kN | Yield Load/kN | Strength-Yield, μ | Initial Stiffness/(kN/mm) |
---|---|---|---|---|
N1 | 617.2 | 528.8 | 1.17 | 90.9 |
N2 | 617.8 | 529.3 | 1.17 | 88.3 |
N3 | 617.1 | 528.2 | 1.17 | 94.8 |
CC1 | 886.9 | 800.1 | 1.11 | 140.6 |
CC2 | 1030.6 | 839.6 | 1.23 | 178.2 |
CC3 | 1165.3 | 974.7 | 1.20 | 150.6 |
CB1 | 783.9 | 691.8 | 1.13 | 106.9 |
CB2 | 879.6 | 748.9 | 1.17 | 108.6 |
CB3 | 934.4 | 788.3 | 1.19 | 113.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Ma, D.; Dong, F.; Liu, Z. Experimental Study on the Impact of Using FRP Sheets on the Axial Compressive Performance of Short-Circular Composite Columns. Materials 2023, 16, 6373. https://doi.org/10.3390/ma16196373
Liu J, Ma D, Dong F, Liu Z. Experimental Study on the Impact of Using FRP Sheets on the Axial Compressive Performance of Short-Circular Composite Columns. Materials. 2023; 16(19):6373. https://doi.org/10.3390/ma16196373
Chicago/Turabian StyleLiu, Jie, Deliang Ma, Feifei Dong, and Zhongxiang Liu. 2023. "Experimental Study on the Impact of Using FRP Sheets on the Axial Compressive Performance of Short-Circular Composite Columns" Materials 16, no. 19: 6373. https://doi.org/10.3390/ma16196373
APA StyleLiu, J., Ma, D., Dong, F., & Liu, Z. (2023). Experimental Study on the Impact of Using FRP Sheets on the Axial Compressive Performance of Short-Circular Composite Columns. Materials, 16(19), 6373. https://doi.org/10.3390/ma16196373