Powder Bed Thermal Diffusivity Using Laser Flash Three Layer Analysis
Abstract
:1. Introduction
2. Theory
2.1. Homogeneous Sample—The Parker Model
2.2. Homogeneous Sample with Heat Loss Correction
2.3. Heterogeneous Samples-Three-Layered Analysis
3. Experimental Apparatus and Specimen
4. Results and Discussion
4.1. Solid Reference Samples, Standard Solid Sample Holder
4.2. Powder Sample, Special Sample Holder
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, L.C.; Ehrlich, L.E.; Powell-Palm, M.J.; Montgomery, C.; Beuth, J.; Malen, J.A. Thermal Conductivity of Metal Powders for Powder Bed Additive Manufacturing. Addit. Manuf. 2018, 21, 201–208. [Google Scholar] [CrossRef]
- Andreotta, R.; Ladani, L.; Brindley, W. Finite Element Simulation of Laser Additive Melting and Solidification of Inconel 718 with Experimentally Tested Thermal Properties. Finite Elem. Anal. Des. 2017, 135, 36–43. [Google Scholar] [CrossRef]
- Kumar, S.; Pityana, S. Laser-Based Additive Manufacturing of Metals. Adv. Mat. Res. 2011, 227, 92–95. [Google Scholar] [CrossRef]
- Habiba, U.; Hebert, R.J. Powder Spreading Mechanism in Laser Powder Bed Fusion Additive Manufacturing: Experiments and Computational Approach Using Discrete Element Method. Materials 2023, 16, 2824. [Google Scholar] [CrossRef]
- Hahn, D.W.; Özişik, M.N. Heat Conduction; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; ISBN 9781118411285. [Google Scholar]
- Ferro, C.G.; Varetti, S.; Maggiore, P.; Lombardi, M.; Biamino, S.; Manfredi, D.; Calignano, F. Design and Characterization of Trabecular Structures for an Anti-Icing Sandwich Panel Produced by Additive Manufacturing. J. Sandw. Struct. Mater. 2020, 22, 1111–1131. [Google Scholar] [CrossRef]
- Kotzem, D.; Arold, T.; Bleicher, K.; Raveendran, R.; Niendorf, T.; Walther, F. Ti6Al4V Lattice Structures Manufactured by Electron Beam Powder Bed Fusion—Microstructural and Mechanical Characterization Based on Advanced in Situ Techniques. J. Mater. Res. Technol. 2023, 22, 2111–2130. [Google Scholar] [CrossRef]
- Mirzaali, M.J.; Azarniya, A.; Sovizi, S.; Zhou, J.; Zadpoor, A.A. Lattice Structures Made by Laser Powder Bed Fusion. In Fundamentals of Laser Powder Bed Fusion of Metals; Elsevier: Amsterdam, The Netherlands, 2021; pp. 423–465. [Google Scholar]
- Kittel, C. Introduction to Solid State Physics; John Wiley & Sons: Hoboken, NJ, USA, 2005; ISBN 978-0-471-41526-8. [Google Scholar]
- Callister, W.D.; Rethwisch, D.G. Materials Science and Engineering an Introduction; Hachette Livre—Dé partement Pratique: Vanves, France, 2018; ISBN 978-1-119-40549-8. [Google Scholar]
- Paul, A.; Laurila, T.; Vuorinen, V.; Divinski, S.V. Fick’s Laws of Diffusion. In Thermodynamics, Diffusion and the Kirkendall Effect in Solids; Springer International Publishing: Cham, Switzerland, 2014; pp. 115–139. [Google Scholar]
- Nye, J.F. Physical Properties of Crystals; Oxford University Press: Oxford, UK, 1985. [Google Scholar]
- Parker, W.J.; Jenkins, R.J.; Butler, C.P.; Abbott, G.L. Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity. J. Appl. Phys. 1961, 32, 1679–1684. [Google Scholar] [CrossRef]
- Abdulagatov, I.M.; Abdulagatova, Z.Z.; Kallaev, S.N.; Bakmaev, A.G.; Ranjith, P.G. Thermal-Diffusivity and Heat-Capacity Measurements of Sandstone at High Temperatures Using Laser Flash and DSC Methods. Int. J. Thermophys. 2015, 36, 658–691. [Google Scholar] [CrossRef]
- Wei, G.; Zhang, X.; Yu, F.; Chen, K. Thermal Diffusivity Measurements on Insulation Materials with the Laser Flash Method. Int. J. Thermophys. 2006, 27, 235–243. [Google Scholar] [CrossRef]
- Taylor, R.E.; Gembarovic, J.; Maglic, K.D. Thermal Diffusivity by the Laser Flash Technique. In Characterization of Materials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002. [Google Scholar]
- Clark, L.M., III; Taylor, R.E. Radiation Loss in the Flash Method for Thermal Diffusivity. J. Appl. Phys. 1975, 46, 714–719. [Google Scholar] [CrossRef]
- Cowan, R.D. Pulse Method of Measuring Thermal Diffusivity at High Temperatures. J. Appl. Phys. 1963, 34, 926–927. [Google Scholar] [CrossRef]
- Cape, J.A.; Lehman, G.W. Temperature and Finite Pulse-Time Effects in the Flash Method for Measuring Thermal Diffusivity. J. Appl. Phys. 1963, 34, 1909–1913. [Google Scholar] [CrossRef]
- Degiovanni, A.; Sinicki, G.; Laurent, M. Heat Pulse Thermal Diffusivity Measurements-Thermal Properties Temperature Dependence and Non-Uniformity of the Pulse Heating. In Thermal Conductivity 18; Springer: Boston, MA, USA, 1985; pp. 537–551. [Google Scholar]
- Watt, D.A. Theory of Thermal Diffusivity by Pulse Technique. Br. J. Appl. Phys. 1966, 17, 231–240. [Google Scholar] [CrossRef]
- Nunes dos Santos, W.; Mummery, P.; Wallwork, A. Thermal Diffusivity of Polymers by the Laser Flash Technique. Polym. Test. 2005, 24, 628–634. [Google Scholar] [CrossRef]
- Abas, R.A.; Hayashi, M.; Seetharaman, S. Thermal Diffusivity Measurements of CMSX-4 Alloy by the Laser-Flash Method. Int. J. Thermophys. 2007, 28, 109–122. [Google Scholar] [CrossRef]
- Sweet, J.N.; Roth, E.P.; Moss, M. Thermal Conductivity of Inconel 718 and 304 Stainless Steel. Int. J. Thermophys. 1987, 8, 593–606. [Google Scholar] [CrossRef]
- Zhang, S.; Lane, B.; Whiting, J.; Chou, K. On Thermal Properties of Metallic Powder in Laser Powder Bed Fusion Additive Manufacturing. J. Manuf. Process. 2019, 47, 382–392. [Google Scholar] [CrossRef]
- Ahsan, F.; Razmi, J.; Ladani, L. Experimental Measurement of Thermal Diffusivity, Conductivity and Specific Heat Capacity of Metallic Powders at Room and High Temperatures. Powder Technol. 2020, 374, 648–657. [Google Scholar] [CrossRef]
- Lee, H. Thermal Diffusivity in Layered and Dispersed Composites; Purdue University: West Lafayette, IN, USA, 1975. [Google Scholar]
- Farooq, M.M.; Giedt, W.H.; Araki, N. Thermal Diffusivity of Liquids Determined by Flash Heating of a Three-Layered Cell. Int. J. Thermophys. 1981, 2, 39–54. [Google Scholar] [CrossRef]
- Ohta, H.; Ogura, G.; Waseda, Y.; Suzuki, M. Thermal Diffusivity Measurements of Molten Salts Using a Three-layered Cell by the Laser Flash Method. Rev. Sci. Instrum. 1990, 61, 2645–2649. [Google Scholar] [CrossRef]
- Maeda, Y.; Sagara, H.; Tye, R.P.; Masuda, M.; Ohta, H.; Waseda, Y. A High-Temperature System Based on the Laser Flash Method to Measure the Thermal Diffusivity of Melts. Int. J. Thermophys. 1996, 17, 253–261. [Google Scholar] [CrossRef]
- James, H.M. Some Extensions of the Flash Method of Measuring Thermal Diffusivity. J. Appl. Phys. 1980, 51, 4666–4672. [Google Scholar] [CrossRef]
- Heckman, R.C. Finite Pulse-time and Heat-loss Effects in Pulse Thermal Diffusivity Measurements. J. Appl. Phys. 1973, 44, 1455–1460. [Google Scholar] [CrossRef]
- ASTM E1461-13; Standard Test Method for Thermal Diffusivity by the Flash Method. ASTM International: West Conshohocken, PA, USA, 2022. [CrossRef]
- Nishi, T.; Azuma, N.; Ohta, H. Effect of Radiative Heat Loss on Thermal Diffusivity Evaluated Using Normalized Logarithmic Method in Laser Flash Technique. High Temp. Mater. Process. 2020, 39, 390–394. [Google Scholar] [CrossRef]
- Biot Number. Available online: https://www.chemeurope.com/en/encyclopedia/Biot_number.html (accessed on 24 April 2023).
- Agazhanov, A.S.; Samoshkin, D.A.; Kozlovskii, Y.M. Thermophysical Properties of Inconel 718 Alloy. J. Phys. Conf. Ser. 2019, 1382, 012175. [Google Scholar] [CrossRef]
- Milošević, N.; Aleksić, I. Thermophysical Properties of Solid Phase Ti-6Al-4V Alloy over a Wide Temperature Range. Int. J. Mater. Res. 2012, 103, 707–714. [Google Scholar] [CrossRef]
- Thermal Diffusivity Table. Available online: https://www.engineersedge.com/heat_transfer/thermal_diffusivity_table_13953.htm (accessed on 7 June 2023).
- Andreotta, R. Finite Element Modeling of Fluid Flow, Thermal Transport, and Melt Pool Geometry in Metallic Powder Bed Additive Manufacturing Processes for Inconel 718; University of Connecticut: Storrs, CT, USA, 2017. [Google Scholar]
- Kerrisk, J.F. Thermal Diffusivity of Heterogeneous Materials. J. Appl. Phys. 1971, 42, 267–271. [Google Scholar] [CrossRef]
- Terada, Y.; Ohkubo, K.; Mohri, T.; Suzuki, T. Thermal Conductivity in Nickel Solid Solutions. J. Appl. Phys. 1997, 81, 2263–2268. [Google Scholar] [CrossRef]
- Touloukian, Y.S.; Powell, R.W.; Ho, C.Y.; Klemens, P.G. Thermophysical Properties of Matter—The TPRC Data Series. Volume 1. Thermal Conductivity—Metallic Elements and Alloys. (Reannouncement). Data Book; Purdue Univ.: Lafayette, IN, USA, 1970. [Google Scholar]
Samples | Mean Thermal Diffusivity (cm2/s) | Deviation | |
---|---|---|---|
In718 solid | Experiment (Temp. range: 100 °C–600 °C) | 0.0434 | 4.8% |
Agazhanov [36] (Temp. range: 126.85 °C–626.85 °C) | 0.0414 | ||
Ti64 solid | Experiment (Temp. range: 100 °C–600 °C) | 0.0362 | 4.0% |
Milosevic [37] (Temp. range: 48.85 °C–584.85 °C) | 0.0377 | ||
Stainless steel solid | Experiment (Temp. range: 50 °C–400 °C) | 0.0461 | 6.5% |
Sweet [24] (Temp. range: 50 °C–400 °C) | 0.0433 |
Temperature (°C) | Max. Temp. Signal (V) | t0.75 (s) | t0.25 (s) | t0.5 (s) | (cm2/s) |
---|---|---|---|---|---|
200 | 1.02 | 2.36 | 1.1 | 3.2 | 0.00040 |
400 | 0.91 | 2.97 | 1.4 | 3.09 | 0.00041 |
600 | 1.92 | 2.4 | 1.1 | 2.1 | 0.00062 |
Temperatures (°C) | α Measured (cm2/s) | α from Literature (cm2/s) [26,39] | Deviation |
---|---|---|---|
200 | 0.0015 | 0.00159 | 5.7% |
400 | 0.0013 | 0.0014 | 7.1% |
600 | 0.0016 | 0.00164 | 2.4% |
Temperatures (°C) | α (cm2/s) | α from Literature (cm2/s) [25] |
---|---|---|
100 | 0.0012 | 0.00143 |
200 | 0.0013 | 0.00168 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habiba, U.; Hebert, R.J. Powder Bed Thermal Diffusivity Using Laser Flash Three Layer Analysis. Materials 2023, 16, 6494. https://doi.org/10.3390/ma16196494
Habiba U, Hebert RJ. Powder Bed Thermal Diffusivity Using Laser Flash Three Layer Analysis. Materials. 2023; 16(19):6494. https://doi.org/10.3390/ma16196494
Chicago/Turabian StyleHabiba, Ummay, and Rainer J. Hebert. 2023. "Powder Bed Thermal Diffusivity Using Laser Flash Three Layer Analysis" Materials 16, no. 19: 6494. https://doi.org/10.3390/ma16196494
APA StyleHabiba, U., & Hebert, R. J. (2023). Powder Bed Thermal Diffusivity Using Laser Flash Three Layer Analysis. Materials, 16(19), 6494. https://doi.org/10.3390/ma16196494