Construction of Human Periodontal Ligament Constitutive Model Based on Collagen Fiber Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Nano-Indentation Experiment
2.3. Fiber Content Measurement
2.4. Viscoelastic Constitutive Model Based on Collagen Fiber Content
3. Results
3.1. Analysis of Experimental Data Results
3.2. Fiber Content Measurement Results
3.3. Fitting Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Takeuchi-Igarashi, H.; Tachibana, T.; Murakashi, E.; Kubota, S.; Numabe, Y. Effect of cellular communication network factor 2/connective tissue growth factor on tube formation by endothelial cells derived from human periodontal ligaments. Arch. Oral Biol. 2021, 132, 105279. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Ma, Q.; Zhao, Z.; Guan, X.; Bai, Y. Periodontal ligament fibroblast-derived exosomes induced by compressive force promote macrophage M1 polarization via Yes-associated protein. Arch. Oral Biol. 2021, 132, 105263. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Hua, Y. Autophagy of periodontal ligament inhibits inflammation and reduces the decline of bone density during orthodontic tooth movement of mice. Arch. Oral Biol. 2021, 121, 104960. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Chen, J.; Li, W.; Darendeliler, M.A.; Swain, M.; Li, Q. Biomechanical investigation into the role of the periodontal ligament in optimising orthodontic force: A finite element case study. Arch. Oral Biol. 2016, 66, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Wang, W.; Wang, X. MicroRNA-34a and microRNA-146a target CELF3 and suppress the osteogenic differentiation of periodontal ligament stem cells under cyclic mechanical stretch. J. Dent. Sci. 2022, 17, 1281–1291. [Google Scholar] [CrossRef]
- Ashrafi, M.; Ghalichi, F.; Mirzakouchaki, B.; Oskui, I.Z. Numerical simulation of hydro-mechanical coupling of periodontal ligament. Proc. Inst. Mech. Eng. 2020, 234, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Hu, Z.; Chang, B.; Liu, X. Quantitative characterizations of the Sharpey’s fibers of rat molars. J. Periodontal Res. 2020, 55, 307–314. [Google Scholar] [CrossRef]
- Bergomi, M.; Cugnoni, J.; Galli, M.; Botsis, J.; Belser, U.C.; Wiskott, H.A. Hydro-mechanical coupling in the periodontal ligament: A porohyperelastic finite element model. J. Biomech. 2010, 44, 34–38. [Google Scholar] [CrossRef]
- Song, Y.; Gao, J.; Qi, C.; Liu, D.; Xiang, H.; Zhang, M.; Yang, X.; Zhang, C. Identification of the periodontal ligament material parameters using response surface method. Med Eng. Phys. 2023, 114, 103974. [Google Scholar] [CrossRef]
- Fill, T.S.; Toogood, R.W.; Major, P.W.; Carey, J.P. Analytically determined mechanical properties of, and models for the periodontal ligament: Critical review of literature. J. Biomech. 2012, 45, 9–16. [Google Scholar] [CrossRef]
- Jiang, D.; Xie, S.; Qin, F.; Zhang, D.; Zhu, R. Constituent Parameter Identification of Braided Composite Based on Sensitivity Analysis. Materials 2022, 15, 8794. [Google Scholar] [CrossRef] [PubMed]
- Ortún-Terrazas, J.; Cegoñino, J.; Santana-Penín, U.; Santana-Mora, U.; del Palomar, A.P. A porous fibrous hyperelastic damage model for human periodontal ligament: Application of a microcomputerized tomography finite element model. Int. J. Numer. Methods Biomed. Eng. 2019, 35, e3176. [Google Scholar] [CrossRef] [PubMed]
- Osada, A.; Hitomi, S.; Nakajima, A.; Hayashi, Y.; Shibuta, I.; Tsuboi, Y.; Motoyoshi, M.; Iwata, K.; Shinoda, M. Periodontal acidification contributes to tooth pain hypersensitivity during orthodontic tooth movement. Neurosci. Res. 2022, 177, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Romanyk, D.L.; Melenka, G.W.; Carey, J.P. Modeling Stress-Relaxation Behavior of the Periodontal Ligament During the Initial Phase of Orthodontic Treatment. J. Biomech. Eng. 2013, 135, 091007. [Google Scholar] [CrossRef] [PubMed]
- Knaup, T.J.; Dirk, C.; Reimann, S.; Keilig, L.; Eschbach, M.; Korbmacher-Steiner, H.; Bourauel, C. Time-dependent behavior of porcine periodontal ligament: A combined experimental, numeric in-vitro study. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Song, Y.; Shi, X.; Lin, J.; Zhang, C. A new perspective: Periodontal ligament is a viscoelastic fluid biomaterial as evidenced by dynamic shear creep experiment. J. Mech. Behav. Biomed. Mater. 2021, 113, 104131. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, E.; Inubushi, T.; Takahashi, K.; Shirakura, M.; Sano, R.; Dalla-Bona, D.A.; Nakajima, A.; van Eijden, T.M.; Tanne, K. Dynamic shear properties of the porcine molar periodontal ligament. J. Biomech. 2007, 40, 1477–1483. [Google Scholar] [CrossRef]
- Natali, A.N.; Pavan, P.G.; Venturato, C.; Komatsu, K. Constitutive modeling of the non-linear visco-elasticity of the periodontal ligament. Comput. Methods Programs Biomed. 2011, 104, 193–198. [Google Scholar] [CrossRef]
- Najafidoust, M.; Hashemi, A.; Oskui, I.Z. Dynamic viscoelastic behavior of bovine periodontal ligament in compression. J. Periodontal Res. 2020, 55, 651–659. [Google Scholar] [CrossRef]
- Gupta, M.; Madhok, K.; Kulshrestha, R.; Chain, S.; Kaur, H.; Yadav, A. Determination of stress distribution on periodontal ligament and alveolar bone by various tooth movements—A 3D FEM study. J. Oral Biol. Craniofacial Res. 2020, 10, 758–763. [Google Scholar] [CrossRef]
- Wu, B.; Zhao, S.; Shi, H.; Lu, R.; Yan, B.; Ma, S.; Markert, B. Viscoelastic properties of human periodontal ligament: Effects of the loading frequency and location. Angle Orthod. 2019, 89, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Pu, P.; Zhao, S.; Izadikhah, I.; Shi, H.; Liu, M.; Lu, R.; Yan, B.; Ma, S.; Markert, B. Frequency-related viscoelastic properties of the human incisor periodontal ligament under dynamic compressive loading. PLoS ONE 2020, 15, e0235822. [Google Scholar] [CrossRef] [PubMed]
- Pini, M.; Zysset, P.; Botsis, J.; Contro, R. Tensile and compressive behaviour of the bovine periodontal ligament. J. Biomech. 2004, 37, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Uhlir, R.; Mayo, V.; Lin, P.H.; Chen, S.; Lee, Y.-T.; Hershey, G.; Lin, F.-C.; Ko, C.-C. Biomechanical characterization of the periodontal ligament: Orthodontic tooth movement. Angle Orthod. 2017, 87, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Oskui, I.Z.; Hashemi, A. Dynamic tensile properties of bovine periodontal ligament: A nonlinear viscoelastic model. J. Biomech. 2016, 49, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Connizzo, B.; Sun, L.; Lacin, N.; Gendelman, A.; Solomonov, I.; Sagi, I.; Grodzinsky, A.; Naveh, G. Nonuniformity in Periodontal Ligament: Mechanics and Matrix Composition. J. Dent. Res. 2021, 100, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, K.; Shibata, T.; Shimada, A. Analysis of contribution of collagen fibre component in viscoelastic behaviour of periodontal ligament using enzyme probe. J. Biomech. 2007, 40, 2700–2706. [Google Scholar] [CrossRef] [PubMed]
- De Jong, T.; Bakker, A.D.; Everts, V.; Smit, T.H. The intricate anatomy of the periodontal ligament and its development: Lessons for periodontal regeneration. J. Periodontal Res. 2017, 52, 965–974. [Google Scholar] [CrossRef]
- Hirashima, S.; Ohta, K.; Kanazawa, T.; Okayama, S.; Togo, A.; Miyazono, Y.; Kusukawa, J.; Nakamura, K. Three-dimensional ultrastructural analysis and histomorphometry of collagen bundles in the periodontal ligament using focused ion beam/scanning electron microscope tomography. J. Periodontal Res. 2020, 55, 23–31. [Google Scholar] [CrossRef]
- Zhong, J.; Pierantoni, M.; Weinkamer, R.; Brumfeld, V.; Zheng, K.; Chen, J.; Swain, M.V.; Weiner, S.; Li, Q. Microstructural heterogeneity of the collagenous network in the loaded and unloaded periodontal ligament and its biomechanical implications. J. Struct. Biol. 2021, 213, 107772. [Google Scholar] [CrossRef]
- Wu, B.; Cheng, K.; Liu, M.; Liu, J.; Jiang, D.; Ma, S.; Yan, B.; Lu, Y. Construction of hyperelastic model of human periodontal ligament based on collagen fibers distribution. J. Mech. Behav. Biomed. Mater. 2022, 135, 105484. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Lu, R.; Liu, X.; Liu, M.; Huang, H.; Wu, B.; Yan, B. Study on the experimental conditions of nano-indentation test for investigating the viscoelastic properties of human periodontal ligament. Stomatology 2020, 40, 313–318. [Google Scholar] [CrossRef]
- Zaoutsos, S.; Papanicolaou, G.; Cardon, A. On the non-linear viscoelastic behaviour of polymer-matrix composites. Compos. Sci. Technol. 1998, 58, 883–889. [Google Scholar] [CrossRef]
- Zhang, Y.-Y.; Mo, X.-L.; Guan, B.-W.; Chen, Q.; Huang, P.; Li, Y.-Q.; Fu, S.-Y. Experimental and theoretical investigations of the viscoelastic behaviour of short carbon fiber reinforced polyetherimide composites. Compos. Struct. 2022, 298, 116016. [Google Scholar] [CrossRef]
- Wang, B.; Hua, Y.; Brazile, B.L.; Yang, B.; Sigal, I.A. Collagen fiber interweaving is central to sclera stiffness. Acta Biomater. 2020, 113, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Todo, M.; Morita, Y.; Matsushita, Y.; Koyano, K. Deformation analysis of the periodontium considering the viscoelasticity of the periodontal ligament. Dent. Mater. 2009, 25, 1285–1292. [Google Scholar] [CrossRef] [PubMed]
- Pei, D.; Hu, X.; Jin, C.; Lu, Y.; Liu, S. Energy Storage and Dissipation of Human Periodontal Ligament during Mastication Movement. ACS Biomater. Sci. Eng. 2018, 4, 4028–4035. [Google Scholar] [CrossRef]
Transverse Regions | Longitudinal Regions | |
---|---|---|
Neck | T-neck | L-neck |
Middle | T-middle | L-middle |
Apex | T-apex | L-apex |
Transverse Plane/MPa | Longitudinal Plane/MPa | |
---|---|---|
Neck | 4.28 | 2.98 |
Middle | 5.08 | 4.79 |
Apex | 1.03 | 0.39 |
Vf (%) | Section 1 | Section 2 | Section 3 | Section 4 | Section 5 | Average |
---|---|---|---|---|---|---|
Apex | 62.198 | 59.01 | 41.2 | 51.417 | 46.116 | 51.9882 |
Middle | 58.249 | 65.771 | 65.65 | 61.369 | 64.669 | 63.1416 |
Neck | 60.007 | 51.991 | 53.889 | 67.895 | 67.78 | 60.3124 |
Neck 1 | Neck 2 | Middle 1 | Middle 2 | Apex 1 | Apex 2 | |
---|---|---|---|---|---|---|
0.0049 | 0.0057 | 0.0030 | 0.0034 | 0.0081 | 0.0098 | |
−0.0096 | −0.0118 | −0.0060 | −0.0082 | −0.0124 | −0.0242 | |
260.8893 | 289.5958 | 264.3402 | 254.2570 | 370.6347 | 191.9794 | |
R2 | 0.995 | 0.997 | 0.9985 | 0.995 | 0.996 | 0.993 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Li, N.; Liu, M.; Cheng, K.; Jiang, D.; Yi, Y.; Ma, S.; Yan, B.; Lu, Y. Construction of Human Periodontal Ligament Constitutive Model Based on Collagen Fiber Content. Materials 2023, 16, 6582. https://doi.org/10.3390/ma16196582
Wu B, Li N, Liu M, Cheng K, Jiang D, Yi Y, Ma S, Yan B, Lu Y. Construction of Human Periodontal Ligament Constitutive Model Based on Collagen Fiber Content. Materials. 2023; 16(19):6582. https://doi.org/10.3390/ma16196582
Chicago/Turabian StyleWu, Bin, Na Li, Mao Liu, Ke Cheng, Di Jiang, Yang Yi, Songyun Ma, Bin Yan, and Yi Lu. 2023. "Construction of Human Periodontal Ligament Constitutive Model Based on Collagen Fiber Content" Materials 16, no. 19: 6582. https://doi.org/10.3390/ma16196582
APA StyleWu, B., Li, N., Liu, M., Cheng, K., Jiang, D., Yi, Y., Ma, S., Yan, B., & Lu, Y. (2023). Construction of Human Periodontal Ligament Constitutive Model Based on Collagen Fiber Content. Materials, 16(19), 6582. https://doi.org/10.3390/ma16196582