Effects of Fines Content on Durability of High-Strength Manufactured Sand Concrete
Abstract
:1. Introduction
2. Raw Materials, Methods and Proportions
2.1. Raw Materials
2.2. Test Methods
2.2.1. Concrete Carbonation Test
2.2.2. Anti-Chloride Performance Test
2.2.3. Sulfate Long-Term Immersion Test
2.2.4. Compressive Strength Tests
2.2.5. Packing Density Test
2.2.6. Mercury Intrusion Test (MIP)
2.2.7. Scanning Electron Microscope (SEM) Observation
2.2.8. Thermogravimetry Analysis (TGA)
2.3. Test Proportions
3. Results and Discussion
3.1. Concrete Carbonation Test Results
3.2. Concrete Anti-Chloride Performance Test Results
3.3. Sulfate Long-Term Immersion Test Results
4. Mechanism Analysis
4.1. Packing Density
4.2. Concrete Pore Structure
4.3. Aggregate and Cement Interface
4.4. TGA
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tong, Z.; Huo, J.Y.; Wang, Z.J. High-throughput design of fiber reinforced cement-based composites using deep learning. Cem. Concr. Compos. 2020, 113, 103716. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, W.; Wu, M.; Shen, B.; Li, M.; Xu, G.; Zhang, B.; Ding, Q.; Chen, X. Experimental study on the utilization of copper tailing as micronized sand to prepare high performance concrete. Constr. Build. Mater. 2020, 244, 118312. [Google Scholar] [CrossRef]
- Rajan, B.; Singh, D. Understanding influence of crushers on shape characteristics of fine aggregates based on digital image and conventional techniques. Constr. Build. Mater. 2017, 150, 833–843. [Google Scholar] [CrossRef]
- Radhakrishna, K.; Praveen, K. Characteristics of Cement Mortar with M-sand as Replacement of Fine Aggregates. Mater. Today Proc. 2018, 3, 25412–25419. [Google Scholar] [CrossRef]
- Koehnken, L.; Rintoul, M.S.; Goichot, M.; Tickner, D.; Loftus, A.C.; Acreman, M.C. Impacts of riverine sand mining on freshwater ecosystems: A review of the scientific evidence and guidance for future research. River Res. Appl. 2020, 36, 362–370. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.W.; Mei, S.L. Manufactured Sand High Performance Concrete; Chemical Industry Press: Beijing, China, 2020. [Google Scholar]
- Hafid, H.; Ovarlez, G.; Toussaint, F.; Jezequel, P.H.; Roussel, N. Effect of particle morphological parameters on sand grains packing properties and rheology of model mortars. Cem. Concr. Res. 2016, 80, 44–51. [Google Scholar] [CrossRef]
- Kirthika, S.K.; Singh, S.K.; Chourasia, A. Alternative fine aggregates in production of sustainable concrete—A review. J. Clean. Prod. 2020, 268, 122089. [Google Scholar]
- Cepuritis, R.; Garboczi, E.J.; Ferraris, C.F.; Jacobsen, S.; Sørensen, B.E. Measurement of particle size distribution and specific surface area for crushed concrete aggregate fines. Powder Technol. 2017, 28, 706–720. [Google Scholar] [CrossRef] [Green Version]
- GB/T 14684; Sand for Construction. Standards Press of China: Beijing, China, 2011.
- Jiang, X.Q.; Tan, S.L.; Yang, Y.B.; Zhou, Q.Y.; Ding, X.B. Experimental research on influence of slag and fines on performance of granite stone chips mortar with high contentfines. Concrete 2012, 4, 103–104. [Google Scholar]
- Ying, P.J.; Liu, F.S.; Ren, S.X.; Dong, G.G. The research on the effect of granite powder on concrete performance. Appl. Mech. Mater. 2012, 204–208, 3760–3764. [Google Scholar] [CrossRef]
- Shen, W.; Liu, Y.; Wang, Z.; Cao, L.; Wu, D.; Wang, Y.; Ji, X. Influence of manufactured sand’s characteristics on its concrete performance. Constr. Build. Mater. 2018, 172, 574–583. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Y.G.; Li, B.; Zhou, M.; Li, B.X.; Liu, Z.; Zhou, J. Coupled effects of the content and methylene blue value (MBV) of microfines on the performance of manufactured sand concrete. Constr. Build. Mater. 2020, 240, 117953. [Google Scholar] [CrossRef]
- Medina, G.; S’aez del Bosque, I.F.; Frías, M.; S’anchez de Rojas, M.I.; Medina, C. Granite quarry waste as a future eco-efficient supplementary cementitious material (SCM): Scientific and technical considerations. Clean. Prod. 2017, 148, 467–476. [Google Scholar] [CrossRef]
- Lyu, K.; She, W.; Chang, H.; Gu, Y. Effect of fine aggregate size on the overlapping of interfacial transition zone (ITZ) in mortars. Constr. Build. Mater. 2020, 248, 118559. [Google Scholar] [CrossRef]
- Singh, S.; Nagar, R.; Agrawal, V. A review on Properties of Sustainable Concrete using granite dust as replacement for river sand. Clean. Prod. 2016, 26, 74–87. [Google Scholar] [CrossRef]
- Kumar, K.P.; Radhakrishna; Ramesh, P.S.; Aravinda, P.T. Effect of fines on strength and durability of concrete with manufactured sand. Mater. Today. Proc. 2022, 66, 2381–2386. [Google Scholar] [CrossRef]
- Gupta, L.K.; Vyas, A.K. Impact on mechanical properties of cement sand mortar containing waste granite powder. Constr. Build. Mater. 2018, 191, 155–164. [Google Scholar] [CrossRef]
- Wang, D.H.; Shi, C.J.; Farzadnia, N.; Shi, Z.G.; Jia, H.F. A review on effects of limestone powder on the properties of concrete. Constr. Build. Mater. 2018, 192, 153–166. [Google Scholar] [CrossRef]
- Zhu, J.; Shu, X.; Tang, J.; Li, T.; Ran, Q.; Liu, J. Effect of microfines from manufactured sand on yield stress of cement paste. Constr. Build. Mater. 2021, 267, 120987. [Google Scholar] [CrossRef]
- Gupta, T.; Kothari, S.; Siddique, S.; Sharma, R.K.; Chaudhary, S. Influence of stone processing dust on mechanical, durability and sustainability of concrete. Constr. Build. Mater. 2019, 223, 918–927. [Google Scholar] [CrossRef]
- Zhao, B. Effect of Different Stone Powder Content on the Performance of Precast Concrete. China Concr. Cem. Prod. 2021, 6, 41–45. [Google Scholar]
- Wang, H.F.; Wu, D.Y.; Mei, Z. Effect of fly ash and limestone powder on inhibiting alkali aggregate reaction of concrete. Constr. Build. Mater. 2019, 210, 620–626. [Google Scholar] [CrossRef]
- Li, B.X.; Yin, L.Y.; Feng, Z.H.; Fan, L.L.; Ye, X.S. Study on the effects of rock dust content on the durability of C60 manufactured sand marine concrete. Concrete 2017, 10, 169–173. [Google Scholar]
- Shen, W.G.; Yang, Z.G.; Cao, L.H.; Cao, L.; Liu, Y.; Yang, H.; Lu, Z.L.; Bai, J. Characterization of manufactured sand: Particle shape, surface texture and behavior in concrete. Constr. Build. Mater. 2016, 114, 595–601. [Google Scholar] [CrossRef]
- Singh, M.; Choudhary, K. A study on environmental and economic impacts of using waste marble powder in concrete. J. Build. Eng. 2017, 13, 87–95. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.Z.; Jin, C.Y.; Mu, J.L.; Li, H.W.; Liu, J.L. Multi-scale creep analysis of river sand and manufactured sand concrete considering the influence of ITZ. Constr. Build. Mater. 2022, 244, 128175. [Google Scholar] [CrossRef]
- General Office of Guangdong Provincial People’s Government. Available online: www.gd.gov.cn/zwgk/wjk/qbwj/ybh/content/post_3279931.html (accessed on 15 February 2022).
- JTG3420-2020; Test Regulations for Highway Engineering Cement and Cement Concrete. People’s Communications Press: Beijing, China, 2020.
- GB/T 50081-2019; Chinese standard for Test Methods for Physical and Mechanical Properties of Concrete. China Construction Industry Press: Beijing, China, 2019.
- Wong, H.H.C.; Kwan, A.K.H. Packing density of cementitious materials: Part 1-measurement using a wet packing method. Mater. Struct. 2008, 41, 689–701. [Google Scholar] [CrossRef]
- Kwan, A.K.H.; Wong, H.H.C. Packing density of cementitious materials: Packing and flow of OPC+PFA+CSF. Mater. Struct. 2008, 41, 773–784. [Google Scholar] [CrossRef]
- JGJ/T 193-2009; Concrete Durability Inspection and Evaluation Standard. China Construction Industry Press: Beijing, China, 2010.
- Wang, D.H.; Shi, C.J.; Farzadnia, N.; Shi, Z.G.; Jia, Z.H.; Qu, Z.H. A review on use of limestone powder in cement-based materials: Mechanism, hydration and micro-structures. Constr. Build. Mater. 2018, 181, 659–672. [Google Scholar] [CrossRef]
- Chouhan, H.S.; Kalla, P.; Nagar, R.; Gautam, P.K. Influence of dimensional stone waste on mechanical and durability properties of mortar: A review. Constr. Build. Mater. 2019, 227, 116662. [Google Scholar] [CrossRef]
- Pajares, I.; Ramirez, S.M.; Varela, M.T.B. Evolution of ettringite in presence of carbonate, and silicate ions. Cem. Concr. Compos. 2003, 25, 861–865. [Google Scholar] [CrossRef]
- Wang, K.; Guo, J.J.; Wu, H.; Yang, L. Influence of dry-wet ratio on properties and microstructure of concrete under sulfate attack. Constr. Build. Mater. 2020, 263, 120635–120646. [Google Scholar] [CrossRef]
- Chen, J.J.; Guan, G.X.; Ng, P.L.; Kwan, A.K.H.; Chu, S.H. Packing Optimization of Paste and Aggregate Phases for Sustainability and Performance Improvement of Concrete. Adv. Powder. Technol. 2021, 32, 987–997. [Google Scholar] [CrossRef]
- Zhang, C.; Li, B.; Wu, F.H. Research on modification of mechanical properties of recycled aggregate concrete by replacing sand with graphite tailings. Rev. Adv. Mater. Sci. 2022, 6, 1–20. [Google Scholar]
- Yang, H.S.; Fang, K.H.; Tu, S.J.; Yang, H.F. The effect and its mechanism of calcium carbonate on the cement based materials. Concrete 2006, 6, 32–35. [Google Scholar]
- Yang, H.C.; Chen, C.; Fan, Z.H. Influence and mechanism of granite powder of manufactured-sand on performance of mechanical sand C80-HSHPC. Port Waterw. Eng. 2021, 11, 13–20. [Google Scholar]
Composition (%) | CaO | SiO2 | MgO | Al2O3 | Fe2O3 | K2O | LOI | Na2O | Else |
---|---|---|---|---|---|---|---|---|---|
cement | 60.20 | 24.53 | 3.32 | 5.01 | 3.85 | 0.28 | 1.85 | 0.17 | 0.79 |
fly ash | 11.52 | 50.85 | 1.56 | 17.21 | 13.14 | 1.32 | -- | 0.52 | 3.88 |
granite fines | 3.58 | 65.46 | 2.13 | 17.82 | 2.84 | 2.98 | -- | 3.88 | 1.07 |
limestone fines | 52.22 | 3.12 | 3.01 | 1.18 | 1.05 | 0.41 | 37.08 | -- | 0.78 |
Sand Type | Apparent Density kg (/m3) | Void Ratio (%) | Fines Content (%) | Methylene Blue Value | Fineness Modulus | Crush Value (%) | Needle-like Content (%) | Water Absorption (%) |
---|---|---|---|---|---|---|---|---|
RS | 2680 | 34 | - | - | 2.60 | 19.2 | - | 8.56 |
GMS | 2773 | 38 | 9.5 | 0.75 | 2.72 | 18.0 | 3.89 | 13.02 |
LMS | 2760 | 39 | 8.4 | 2.75 | 3.00 | 25.0 | 4.17 | 11.75 |
Sand Type | Surface Topography and SEM Images |
---|---|
RS | |
GMS | |
LMS |
Mix | Fines Content (%) | Cement (kg/m3) | Fly Ash (kg/m3) | Sand (kg/m3) | Fines (kg/m3) | Gravel (kg/m3) | Water (kg/m3) | Water Reducer (kg/m3) | Slump (mm) |
---|---|---|---|---|---|---|---|---|---|
RS-0 | 0 | 350 | 150 | 805 | 0 | 1025 | 150 | 3.8 | 210 |
GMS-0 | 0 | 350 | 150 | 805 | 0 | 1025 | 150 | 2.9 | 205 |
GMS-5 | 5 | 350 | 150 | 765 | 40 | 1025 | 150 | 3.3 | 200 |
GMS-10 | 10 | 350 | 150 | 725 | 80 | 1025 | 150 | 4.5 | 205 |
GMS-15 | 15 | 350 | 150 | 684 | 121 | 1025 | 150 | 5.5 | 210 |
GMS-20 | 20 | 350 | 150 | 644 | 161 | 1025 | 150 | 6.8 | 190 |
LMS-0 | 0 | 350 | 150 | 805 | 0 | 1025 | 150 | 3.2 | 200 |
LMS-5 | 5 | 350 | 150 | 765 | 40 | 1025 | 150 | 3.4 | 195 |
LMS-10 | 10 | 350 | 150 | 725 | 80 | 1025 | 150 | 3.5 | 200 |
LMS-15 | 15 | 350 | 150 | 684 | 121 | 1025 | 150 | 4.6 | 205 |
LMS-20 | 20 | 350 | 150 | 644 | 161 | 1025 | 150 | 5.2 | 210 |
Mix | Fines Content (%) | Concrete Carbonation Depth (mm) | |||
---|---|---|---|---|---|
3 d | 7 d | 14 d | 28 d | ||
RS-0 | 0 | 0 | 0.80 | 1.59 | 2.25 |
GMS-0 | 0 | 0 | 1.89 | 2.88 | 3.84 |
GMS-5 | 5 | 0 | 1.15 | 2.42 | 3.06 |
GMS-10 | 10 | 0 | 0.75 | 1.38 | 1.85 |
GMS-15 | 15 | 0 | 1.03 | 2.08 | 2.25 |
GMS-20 | 20 | 0 | 1.38 | 2.55 | 2.85 |
LMS-0 | 0 | 0 | 2.55 | 3.32 | 4.45 |
LMS-5 | 5 | 0 | 2.01 | 2.56 | 3.33 |
LMS-10 | 10 | 0 | 1.13 | 1.61 | 2.05 |
LMS-15 | 15 | 0 | 1.83 | 2.15 | 2.42 |
LMS-20 | 20 | 0 | 1.92 | 2.59 | 3.05 |
Mix | Fines Content (%) | Concrete Electric f€ (C) | ||
---|---|---|---|---|
28 d | 56 d | 90 d | ||
RS-0 | 0 | 511 | 351 | 165 |
GMS-0 | 0 | 530 | 385 | 178 |
GMS-5 | 5 | 456 | 315 | 125 |
GMS-10 | 10 | 438 | 295 | 116 |
GMS-15 | 15 | 395 | 263 | 100 |
GMS-20 | 20 | 384 | 255 | 97 |
LMS-0 | 0 | 628 | 433 | 220 |
LMS-5 | 5 | 562 | 388 | 170 |
LMS-10 | 10 | 545 | 377 | 166 |
LMS-15 | 15 | 509 | 333 | 145 |
LMS-20 | 20 | 505 | 328 | 141 |
Number | Fines Content (%) | Concrete Compression Strength (MPa) | |||
---|---|---|---|---|---|
Standard 90 d | Standard 30 d + Soak 60 d | Standard 180 d | Standard 30 d + Soak 150 d | ||
RS-0 | 0 | 83.9 | 82.6 | 86.2 | 74.2 |
GMS-0 | 0 | 78.3 | 76.7 | 84.4 | 76.9 |
GMS-5 | 5 | 86.9 | 83.3 | 88.5 | 81.9 |
GMS-10 | 10 | 92.7 | 89.2 | 95.6 | 87.8 |
GMS-15 | 15 | 87.3 | 83.9 | 91.4 | 83.7 |
GMS-20 | 20 | 80.4 | 76.8 | 87.1 | 83.7 |
LMS-0 | 0 | 80.6 | 79.5 | 87.0 | 79.8 |
LMS-5 | 5 | 84.9 | 84.4 | 90.5 | 82.2 |
LMS-10 | 10 | 93.8 | 92.9 | 97.1 | 82.0 |
LMS-15 | 15 | 94.8 | 93.2 | 102.9 | 88.3 |
LMS-20 | 20 | 89.5 | 87.6 | 90.9 | 78.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, S.; Chen, J.; Wang, W. Effects of Fines Content on Durability of High-Strength Manufactured Sand Concrete. Materials 2023, 16, 522. https://doi.org/10.3390/ma16020522
Zheng S, Chen J, Wang W. Effects of Fines Content on Durability of High-Strength Manufactured Sand Concrete. Materials. 2023; 16(2):522. https://doi.org/10.3390/ma16020522
Chicago/Turabian StyleZheng, Sunbo, Jiajian Chen, and Wenxue Wang. 2023. "Effects of Fines Content on Durability of High-Strength Manufactured Sand Concrete" Materials 16, no. 2: 522. https://doi.org/10.3390/ma16020522
APA StyleZheng, S., Chen, J., & Wang, W. (2023). Effects of Fines Content on Durability of High-Strength Manufactured Sand Concrete. Materials, 16(2), 522. https://doi.org/10.3390/ma16020522