Effect of Nematogen Doping in Bent-Core Molecular Systems with a Helical Nanofilament and Dark Conglomerate
Abstract
:1. Introduction
2. Materials
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, K.; Kim, H.; Jo, S.Y.; Araoka, F.; Yoon, D.K.; Choi, S.W. Photomodulated supramolecular chirality in achiral photoresponsive rodlike compounds nanosegregated from the helical nanofilaments of achiral bent-core molecules. ACS Appl. Mater. Interfaces 2015, 7, 22686–22691. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Noh, Y.W.; Park, D.-W.; Song, M.H.; Choi, S.-W. Development of colored perovskite solar cells using cholesteric helicoidal superstructures. Nano Energy 2022, 93, 106801. [Google Scholar] [CrossRef]
- Jeon, S.W.; Kim, D.Y.; Araoka, F.; Jeong, K.U.; Choi, S.W. Nanosegregated chiral materials with self-assembled hierarchical mesophases: Effect of thermotropic and photoinduced polymorphism in rodlike molecules. Chem. Eur. J. 2017, 23, 17794–17799. [Google Scholar] [CrossRef]
- Sekine, T.; Niori, T.; Watanabe, J.; Furukawa, T.; Choi, S.W.; Takezoe, H. Spontaneous helix formation in smectic liquid crystals comprising achiral molecules. J. Mater. Chem. 1997, 7, 1307–1309. [Google Scholar] [CrossRef]
- Reddy, R.A.; Tschierske, C. Bent-core liquid crystals: Polar order, superstructural chirality and spontaneous desymmetrisation in soft matter systems. J. Mater. Chem. 2006, 16, 907–961. [Google Scholar] [CrossRef]
- Takezoe, H.; Takanishi, Y.J. Bent-core liquid crystals: Their mysterious and attractive world. Appl. Phys. 2006, 45, 597–625. [Google Scholar] [CrossRef]
- Hough, L.E.; Jung, H.T.; Krüerke, D.; Heberling, M.S.; Nakata, M.; Jones, C.D.; Chen, D.; Link, D.R.; Zasadzinski, J.; Heppke, G.; et al. Helical nanofilament phases. Science 2009, 325, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shadpour, S.; Prévot, M.E.; Chirgwin, M.; Nemati, A.; Hegmann, E.; Lemieux, R.P.; Hegmann, T. Molecular conformation of bent-core molecules affected by chiral side chains dictates polymorphism and chirality in organic nano- and microfilaments. ACS Nano 2021, 15, 7249–7270. [Google Scholar] [CrossRef]
- Liu, J.; Molard, Y.; Prévot, M.E.; Hegmann, T. Highly tunable circularly polarized emission of an aggregation-induced emission dye using helical nano- and microfilaments as supramolecular chiral templates. ACS Appl. Mater. Interfaces 2022, 14, 29398–29411. [Google Scholar] [CrossRef]
- Walba, D.M.; Eshdat, L.; Korblova, E.; Shoemaker, R.K. On the nature of the B4 banana phase: Crystal or not a crystal? Cryst. Growth Des. 2005, 5, 2091–2099. [Google Scholar] [CrossRef]
- Chen, D.; Maclennan, J.E.; Shao, R.; Yoon, D.K.; Wang, H.; Korblova, E.; Walba, D.M.; Glaser, M.A.; Clark, N.A. Chirality preserving growth of helical filaments in the B4 phase of bent-core liquid crystals. J. Am. Chem. Soc. 2011, 133, 12656–12663. [Google Scholar] [CrossRef]
- Foley, L.; Park, W.G.; Yang, M.Y.; Carlson, E.; Korblova, E.; Yoon, D.K.; Walba, D.M. Nanoconfinement of the low-temperature dark conglomerate: Structural control from focal conics to helical nanofilaments. Chem. Eur. J. 2019, 25, 7438–7442. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Yoon, D.K. Orientation control of helical nanofilament phase and its chiroptical applications. Crystals 2020, 10, 675. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Lee, J.-J.; Park, J.-S.; Choi, Y.-J.; Choi, S.-W. Control of the induced handedness of helical nanofilaments employing cholesteric liquid crystal fields. Molecules 2021, 26, 6055. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-J.; Choi, S.-W. Preferential circularly polarized luminescence from a nano-segregated liquid crystalline phase using a polymerized twisted nematic platform. Polymers 2020, 12, 2529. [Google Scholar] [CrossRef] [PubMed]
- Le, K.V.; Takezoe, H.; Araoka, F. Chiral superstructure mesophases of achiral bent-shaped molecules—Hierarchical chirality amplification and physical properties. Adv. Mater. 2017, 29, 27966798. [Google Scholar] [CrossRef]
- Hough, L.E.; Spannuth, M.; Nakata, M.; Coleman, D.A.; Jones, C.D.; Dantlgraber, G.; Tschierske, C.; Watanabe, J.; Körblova, E.; Walba, D.M.; et al. Chiral isotropic liquids from achiral molecules. Science 2009, 325, 452–456. [Google Scholar] [CrossRef]
- Alaasar, M.; Prehm, M.; Tschierske, C. Helical nano-crystallite (HNC) phases: Chirality synchronization of achiral bent-core mesogens in a new type of dark conglomerates. Chem. Eur. J. 2016, 22, 6583–6597. [Google Scholar] [CrossRef]
- Park, W.G.; Yang, M.Y.; Park, H.W.; Wolska, J.M.; Ahn, H.G.; Shin, T.J.; Pociecha, D.; Gorecka, E.; Yoon, D.K. Directing polymorphism in the helical nanofilament phase. Chem. Eur. J. 2021, 27, 7108–7113. [Google Scholar] [CrossRef]
- Gimeno, N.; Sánchez-Ferrer, A.; Sebastián, N.; Mezzenga, R.; Ros, M.B. Bent-core based main-chain polymers showing the dark conglomerate liquid crystal phase. Macromolecules 2011, 44, 9586–9594. [Google Scholar] [CrossRef]
- Takanishi, Y.; Shin, G.J.; Jung, J.C.; Choi, S.W.; Ishikawa, K.; Watanabe, J.; Takezoe, H.; Toledano, P. Observation of very large chiral domains in a liquid crystal phase formed by mixtures of achiral bent-core and rod molecules. J. Mater. Chem. 2005, 15, 4020–4024. [Google Scholar] [CrossRef]
- Otani, T.; Araoka, F.; Ishikawa, K.; Takezoe, H. Enhanced optical activity by achiral rod-like molecules nanosegregated in the B4 structure of achiral bent-core molecules. J. Am. Chem. Soc. 2009, 131, 12368–12372. [Google Scholar] [CrossRef]
- Lee, J.-J.; Kim, S.; Nishikawa, H.; Takanishi, Y.; Iwayama, H.; Kim, C.; Choi, S.-W.; Araoka, F. Chiroptical performances in self-assembled hierarchical nanosegregated chiral intermediate phases composed of two different achiral bent-core molecules. Int. J. Mol. Sci. 2022, 23, 14629. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Tuchband, M.R.; Horanyi, B.; Korblova, E.; Walba, D.M.; Glaser, M.A.; Maclennan, J.E.; Clark, N.A. Diastereomeric liquid crystal domains at the mesoscale. Nat. Comm. 2015, 6, 7763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, C.; Chen, D.; Shen, Y.; Jones, C.D.; Glaser, M.A.; Maclennan, J.E.; Clark, N.A. Nanophase segregation in binary mixtures of a bent-core and a rodlike liquid-crystal molecule. Phys. Rev. E 2010, 81, 011704. [Google Scholar] [CrossRef]
- Kim, B.C.; Choi, H.J.; Lee, J.J.; Araoka, F.; Choi, S.W. Circularly polarized luminescence induced by chiral super nanospaces. Adv. Funct. Mater. 2019, 29, 1903246. [Google Scholar] [CrossRef]
- Lee, J.J.; Kim, B.C.; Choi, H.J.; Bae, S.; Araoka, F.; Choi, S.W. Inverse helical nanofilament networks serving as a chiral nanotemplate. ACS Nano 2020, 14, 5243–5250. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Lee, J.-J.; Choi, S.-W. Chiroptical characteristics of nanosegregated phases in binary mixture consisting of achiral bent-core molecule and bent-core base main-chain polymer. Polymers 2022, 14, 2823. [Google Scholar] [CrossRef]
- Lee, J.-J.; Choi, S.-W. Enhancement of luminescence dissymmetry factor in nano-segregated phase generated by phase separation between helical nanofilaments and liquid-crystalline amectic A phase. Crystals 2020, 10, 952. [Google Scholar] [CrossRef]
- Alaasar, M.; Prehm, M.; Brautzsch, M.; Tschierske, C. Dark conglomerate phases of azobenzene derived bent-core mesogens—Relationships between the molecular structure and mirror symmetry breaking in soft matter. Soft Matter 2014, 10, 7285–7296. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-J.; Choi, S.-W. Effect of Nematogen Doping in Bent-Core Molecular Systems with a Helical Nanofilament and Dark Conglomerate. Materials 2023, 16, 548. https://doi.org/10.3390/ma16020548
Lee J-J, Choi S-W. Effect of Nematogen Doping in Bent-Core Molecular Systems with a Helical Nanofilament and Dark Conglomerate. Materials. 2023; 16(2):548. https://doi.org/10.3390/ma16020548
Chicago/Turabian StyleLee, Jae-Jin, and Suk-Won Choi. 2023. "Effect of Nematogen Doping in Bent-Core Molecular Systems with a Helical Nanofilament and Dark Conglomerate" Materials 16, no. 2: 548. https://doi.org/10.3390/ma16020548
APA StyleLee, J. -J., & Choi, S. -W. (2023). Effect of Nematogen Doping in Bent-Core Molecular Systems with a Helical Nanofilament and Dark Conglomerate. Materials, 16(2), 548. https://doi.org/10.3390/ma16020548