Effect of Magnetic Resonance Imaging at 1.5 T and 3 T on Temperature and Bond Strength of Orthodontic Bands with Welded Tubes: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Temperature Test and MRI
2.3. Shear Bond Strength Test (SBS)
2.4. Statistical Analysis
3. Results
3.1. Temperature Test
3.2. SBS Test
3.3. Linear Regressions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reda, R.; Zanza, A.; Mazzoni, A.; Cicconetti, A.; Testarelli, L.; Di Nardo, D. An Update of the Possible Applications of Magnetic Resonance Imaging (MRI) in Dentistry: A Literature Review. J. Imaging 2021, 7, 75. [Google Scholar] [CrossRef] [PubMed]
- Chockattu, S.J.; Suryakant, D.B.; Thakur, S. Unwanted effects due to interactions between dental materials and magnetic resonance imaging: A review of the literature. Restor. Dent. Endod. 2018, 43, 39. [Google Scholar] [CrossRef] [PubMed]
- Poorsattar-Bejeh Mir, A.; Rahmati-Kamel, M. Should the orthodontic brackets always be removed prior to magnetic resonance imaging (MRI)? J. Oral Biol. Craniofac. Res. 2016, 6, 142–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Görgülü, S.; Ayyildiz, S.; Kamburoglu, K.; Gökçe, S.; Ozen, T. Effect of orthodontic brackets and different wires on radiofrequency heating and magnetic field interactions during 3-T MRI. Dentomaxillofac. Radiol. 2014, 43, 20130356. [Google Scholar] [CrossRef] [Green Version]
- Dalili Kajan, Z.; Khademi, J.; Alizadeh, A.; Babaei Hemmaty, Y.; Atrkar Roushan, Z. A comparative study of metal artifacts from common metal orthodontic brackets in magnetic resonance imaging. Imaging Sci. Dent. 2015, 45, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Shalish, M.; Dykstein, N.; Friedlander-Barenboim, S.; Ben-David, E.; Gomori, J.M.; Chaushu, S. Influence of common fixed retainers on the diagnostic quality of cranial magnetic resonance images. Am. J. Orthod. Dentofac. Orthop. 2015, 147, 604–609. [Google Scholar] [CrossRef]
- Hasanin, M.; Kaplan, S.E.F.; Hohlen, B.; Lai, C.; Nagshabandi, R.; Zhu, X.; Al-Jewair, T. Effects of orthodontic appliances on the diagnostic capability of magnetic resonance imaging in the head and neck region: A systematic review. Int. Orthod. 2019, 17, 403–414. [Google Scholar] [CrossRef]
- Degrazia, F.W.; Genari, B.; Ferrazzo, V.A.; Santos-Pinto, A.D.; Grehs, R.A. Enamel Roughness Changes after Removal of Orthodontic Adhesive. Dent. J. 2018, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Sfondrini, M.F.; Preda, L.; Calliada, F.; Carbone, L.; Lungarotti, L.; Bernardinelli, L.; Gandini, P.; Scribante, A. Magnetic Resonance Imaging and Its Effects on Metallic Brackets and Wires: Does It Alter the Temperature and Bonding Efficacy of Orthodontic Devices? Materials 2019, 12, 3971. [Google Scholar] [CrossRef] [Green Version]
- Wylezinska, M.; Pinkstone, M.; Hay, N.; Scott, A.D.; Birch, M.J.; Miquel, M.E. Impact of orthodontic appliances on the quality of craniofacial anatomical magnetic resonance imaging and real-time speech imaging. Eur. J. Orthod. 2015, 37, 610–617. [Google Scholar] [CrossRef]
- Hasegawa, M.; Miyata, K.; Abe, Y.; Ishigami, T. Radiofrequency heating of metallic dental devices during 3.0 T MRI. Dentomaxillofac. Radiol. 2013, 42, 20120234. [Google Scholar] [CrossRef] [Green Version]
- Okano, Y.; Yamashiro, M.; Kaneda, T.; Kasai, K. Magnetic resonance imaging diagnosis of the temporomandibular joint in patients with orthodontic appliances. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2003, 95, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Veiga Jardim, A.F.; Azevedo, M.N.; Souza, J.B.; Freitas, J.C.; Estrela, C. Evaluation of bond strength of molar orthodontic tubes subjected to reinforcement with flowable and bonding resins. J. Orofac. Orthop. 2020, 81, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Elison, J.M.; Leggitt, V.L.; Thomson, M.; Oyoyo, U.; Wycliffe, N.D. Influence of common orthodontic appliances on the diagnostic quality of cranial magnetic resonance images. Am. J. Orthod. Dentofacial. Orthop. 2008, 134, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.; Walsh, T.; Mandall, N.A.; Matthew, S.; Fox, D. Banding versus bonding of first permanent molars: A multi-centre randomized controlled trial. J. Orthod. 2011, 38, 81–89. [Google Scholar] [CrossRef]
- Cacciafesta, V.; Sfondrini, M.F.; Calvi, D.; Scribante, A. Effect of fluoride application on shear bond strength of brackets bonded with a resin-modified glass-ionomer. Am. J. Orthod. Dentofacial Orthop. 2005, 127, 580–583. [Google Scholar] [CrossRef]
- Millett, D.T.; Cummings, A.; Letters, S.; Roger, E.; Love, J. Resin-modified glass ionomer, modified composite or conventional glass ionomer for band cementation?--an in vitro evaluation. Eur. J. Orthod. 2003, 25, 609–614. [Google Scholar] [CrossRef]
- Eliades, T.; Brantley, W.A. The inappropriateness of conventional orthodontic bond strength assessment protocols. Eur. J. Orthod. 2000, 22, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Artun, J.; Bergland, S. Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment. Am. J. Orthod. 1984, 85, 333–340. [Google Scholar] [CrossRef]
- Regier, M.; Kemper, J.; Kaul, M.G.; Feddersen, M.; Adam, G.; Kahl-Nieke, B.; Klocke, A. Radiofrequency-induced heating near fixed orthodontic appliances in high field MRI systems at 3.0 Tesla. J. Orofac. Orthop. 2009, 70, 485–494. [Google Scholar] [CrossRef]
- Raszewski, Z.; Brząkalski, D.; Derpeński, Ł.; Jałbrzykowski, M.; Przekop, R.E. Aspects and Principles of Material Connections in Restorative Dentistry—A Comprehensive Review. Materials 2022, 15, 7131. [Google Scholar] [CrossRef]
- Ottl, P.; Lauer, H.C. Temperature response in the pulpal chamber during ultrahigh-speed tooth preparation with diamond burs of different grit. J. Prosthet. Dent. 1998, 80, 12–19. [Google Scholar] [CrossRef]
- Wang, Z.J.; Rollins, N.K.; Liang, H.; Park, Y.J. Induced magnetic moment in stainless steel components of orthodontic appliances in 1.5 T MRI scanners. Med. Phys. 2015, 42, 5871–5878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yassi, K.; Ziane, F.; Bardinet, E.; Moinard, M.; Veyret, B.; Chateil, J.F. Evaluation des risques d’échauffement et de déplacement des appareils orthodontiques en imagerie par resonance. J. Radiol. 2007, 88, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Scribante, A.; Contreras-Bulnes, R.; Montasser, M.A.; Vallittu, P.K. Orthodontics: Bracket Materials, Adhesives Systems, and Their Bond Strength. Biomed. Res. Int. 2016, 2016, 1329814. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.L.; Appenzeller, S.; Yasuda, C.L.; Pereira, F.R.; Zanardi, V.A.; Cendes, F. Artifacts in brain magnetic resonance imaging due to metallic dental objects. Med. Oral Patol. Oral Cir. Bucal. 2009, 14, E278–E282. [Google Scholar]
- Kemper, J.; Priest, A.N.; Schulze, D.; Kahl-Nieke, B.; Adam, G.; Klocke, A. Orthodontic springs and auxiliary appliances: Assessment of magnetic field interactions associated with 1.5 T and 3 T magnetic resonance systems. Eur. Radiol. 2007, 17, 533–540. [Google Scholar] [CrossRef]
Group | MRI | Cement * |
---|---|---|
1 | No MRI | RMGIC |
2 | No MRI | Composite |
3 | 1.5 T MRI | RMGIC |
4 | 1.5 T MRI | Composite |
5 | 3 T MRI | RMGIC |
6 | 3 T MRI | Composite |
Multi-Cure Cement | Transbond Plus Cement |
---|---|
|
|
|
|
|
|
|
|
|
Magnetic Field Strength | Bonding | Time | Mean | SD | Min | Mdn | Max | Significance * |
---|---|---|---|---|---|---|---|---|
1.5 T | RMGIC | T0 | 22.69 | 1.00 | 21.6 | 22.25 | 24.8 | A,C,D |
1.5 T | RMGIC | T1 | 23.17 | 0.34 | 22.7 | 23.3 | 23.6 | A,B,C,D,E |
1.5 T | Composite | T0 | 22.24 | 0.86 | 20.9 | 22 | 23.9 | A,B |
1.5 T | Composite | T1 | 23.02 | 0.48 | 22.5 | 22.9 | 24 | A,B,C |
3 T | RMGIC | T0 | 23.11 | 0.86 | 22.2 | 23 | 24.7 | A,B,C,D,E |
3 T | RMGIC | T1 | 24.19 | 0.60 | 23.4 | 24 | 25.2 | E,F |
3 T | Composite | T0 | 22.71 | 1.40 | 20.9 | 23.3 | 24.4 | A,C,D,E |
3 T | Composite | T1 | 23.53 | 0.45 | 23.2 | 23.4 | 24.7 | D |
Magnetic Field Strength | Bonding | Time | Mean | SD | Min | Mdn | Max | Significance * |
---|---|---|---|---|---|---|---|---|
1.5 T | RMGIC | T0 | 21.95 | 0.48 | 21.5 | 21.9 | 23 | A,B |
1.5 T | RMGIC | T1 | 22.74 | 0.62 | 21.9 | 22.9 | 23.5 | B,C,D |
1.5 T | Composite | T0 | 21.75 | 0.22 | 21.3 | 21.75 | 22.1 | A |
1.5 T | Composite | T1 | 22.69 | 1.10 | 21 | 22.9 | 24.3 | A,C,D |
3 T | RMGIC | T0 | 22.53 | 0.34 | 22.2 | 22.5 | 23.4 | A,C |
3 T | RMGIC | T1 | 23.59 | 1.33 | 22.4 | 23 | 26 | D,E |
3 T | Composite | T0 | 21.99 | 0.31 | 21.4 | 22.1 | 22.5 | A,B |
3 T | Composite | T1 | 23.24 | 0.30 | 23 | 23.15 | 24 | C,D |
Group | Magnetic Field Strength | Bonding | Mean | SD | Min | Mdn | Max | Significance * |
---|---|---|---|---|---|---|---|---|
1 | No MRI | RMGIC | 1.19 | 0.31 | 0.94 | 1.11 | 2.02 | A |
2 | No MRI | Composite | 1.39 | 0.37 | 0.68 | 1.39 | 1.91 | A |
3 | 1.5 T | RMGIC | 1.21 | 0.52 | 0.49 | 1.17 | 2.18 | A |
4 | 1.5 T | Composite | 1.23 | 0.21 | 0.93 | 1.21 | 1.63 | A |
5 | 3 T | RMGIC | 1.31 | 0.31 | 0.83 | 1.26 | 1.88 | A |
6 | 3 T | Composite | 1.27 | 0.39 | 0.75 | 1.23 | 1.91 | A |
Dependent Variable | Independent Variable | p Value |
---|---|---|
Tube temperature | Strength | 0.0041 * |
Time | 0.0001 * | |
Bonding | ns | |
Band temperature | Strength | 0.0054 * |
Time | <0.0001 * | |
Bonding | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sfondrini, M.F.; Gallo, S.; Pascadopoli, M.; Rizzi, C.; Boldrini, A.; Santagostini, S.; Anemoni, L.; Gorone, M.S.P.; Preda, L.; Gandini, P.; et al. Effect of Magnetic Resonance Imaging at 1.5 T and 3 T on Temperature and Bond Strength of Orthodontic Bands with Welded Tubes: An In Vitro Study. Materials 2023, 16, 651. https://doi.org/10.3390/ma16020651
Sfondrini MF, Gallo S, Pascadopoli M, Rizzi C, Boldrini A, Santagostini S, Anemoni L, Gorone MSP, Preda L, Gandini P, et al. Effect of Magnetic Resonance Imaging at 1.5 T and 3 T on Temperature and Bond Strength of Orthodontic Bands with Welded Tubes: An In Vitro Study. Materials. 2023; 16(2):651. https://doi.org/10.3390/ma16020651
Chicago/Turabian StyleSfondrini, Maria Francesca, Simone Gallo, Maurizio Pascadopoli, Cinzia Rizzi, Andrea Boldrini, Simone Santagostini, Luca Anemoni, Maria Sole Prevedoni Gorone, Lorenzo Preda, Paola Gandini, and et al. 2023. "Effect of Magnetic Resonance Imaging at 1.5 T and 3 T on Temperature and Bond Strength of Orthodontic Bands with Welded Tubes: An In Vitro Study" Materials 16, no. 2: 651. https://doi.org/10.3390/ma16020651
APA StyleSfondrini, M. F., Gallo, S., Pascadopoli, M., Rizzi, C., Boldrini, A., Santagostini, S., Anemoni, L., Gorone, M. S. P., Preda, L., Gandini, P., & Scribante, A. (2023). Effect of Magnetic Resonance Imaging at 1.5 T and 3 T on Temperature and Bond Strength of Orthodontic Bands with Welded Tubes: An In Vitro Study. Materials, 16(2), 651. https://doi.org/10.3390/ma16020651