Two-Steps Method to Prepare Multilayer Sandwich Structure Carbon Fiber Composite with Thermal and Electrical Anisotropy and Electromagnetic Interference Shielding
Abstract
:1. Introduction
2. Materials and Experiments
2.1. Materials
2.2. Experiments
2.3. Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiu, L.; Zheng, X.H.; Zhu, J.; Su, G.P.; Tang, D.W. The effect of grain size on the lattice thermal conductivity of an individual polyacrylonitrile-based carbon fiber. Carbon 2013, 51, 265–273. [Google Scholar] [CrossRef]
- Wang, Q.F.; Ma, Y.; Liang, X.; Zhang, D.H.; Miao, M.H. Flexible supercapacitors based on carbon nanotube-MnO2 nanocomposite film electrode. Chem. Eng. J. 2019, 371, 145–153. [Google Scholar] [CrossRef]
- Cui, Y.; Qin, Z.H.; Wu, H.; Li, M.; Hu, Y.J. Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management. Nat. Commun. 2021, 12, 1284. [Google Scholar] [CrossRef]
- Saylor, R.A.; Hersey, M.; West, A.; Buchanan, A.M.; Berger, S.N.; Nijhout, H.F.; Reed, M.C.; Best, J.; Hashemi, P. In vivo Hippocampal Serotonin Dynamics in Male and Female Mice: Determining Effects of Acute Escitalopram Using Fast Scan Cyclic Voltammetry. Front. Neurosci. 2019, 13, 103389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shalaby, H.A.; Hassan, M.M.; Safar, S.S. Parametric study of shear strength of CFRP strengthened end-web panels. Steel Compos. Struct. 2019, 31, 159–172. [Google Scholar]
- Kim, J.T.; Park, C.W.; Kim, B.J. A study on synergetic EMI shielding behaviors of Ni-Co alloy-coated carbon fibers-reinforced composites. Synthetic. Met. 2017, 223, 212–217. [Google Scholar] [CrossRef]
- Xiao, S.H.; Zhou, X.; Deng, H.; Fu, Q. Preparation of elastic conductor with high stretchability and stable conductivity under strain via pre-stretching and spraying approach. Compos. Commun. 2021, 24, 100641. [Google Scholar] [CrossRef]
- Ruan, K.P.; Zhong, X.; Shi, X.T.; Dang, J.J.; Gu, J.W. Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: A mini-review. Mater. Today Phys. 2021, 20, 100456. [Google Scholar] [CrossRef]
- Ruan, K.P.; Gu, J.W. Ordered Alignment of Liquid Crystalline Graphene Fluoride for Significantly Enhancing Thermal Conductivities of Liquid Crystalline Polyimide Composite Films. Macromolecules 2022, 55, 4134–4145. [Google Scholar] [CrossRef]
- Song, P.; Liu, B.; Qiu, H.; Shi, X.T.; Cao, D.P.; Gu, J.W. MXenes for polymer matrix electromagnetic interference shielding composites: A review. Compos. Commun. 2021, 24, 100653. [Google Scholar] [CrossRef]
- Qian, G.; Wu, B.; Qin, Z.; Li, X.; Zheng, Z.; Xia, R.; Qian, J. Enhanced Thermal Conductivity via In Situ Constructed CNT Aerogel Structure in Composites. Adv. Mater. Interfaces 2022, 9, 2102098. [Google Scholar] [CrossRef]
- Liu, Z.F.; Chen, Z.H.; Yu, F. Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler. Sol. Energy Mater. Sol. Cells 2019, 192, 72–80. [Google Scholar] [CrossRef]
- Park, J.M.; Kwon, D.J.; Wang, Z.J.; Roh, J.U.; Lee, W.I.; Park, J.K.; DeVries, K.L. Effects of carbon nanotubes and carbon fiber reinforcements on thermal conductivity and ablation properties of carbon/phenolic composites. Compos. Part. B-Eng. 2014, 67, 22–29. [Google Scholar] [CrossRef]
- Han, Z.D.; Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 2011, 36, 914–944. [Google Scholar] [CrossRef] [Green Version]
- Jouni, M.; Djurado, D.; Massardier, V.; Boiteux, G. A representative and comprehensive review of the electrical and thermal properties of polymer composites with carbon nanotube and other nanoparticle fillers. Polym. Int. 2017, 66, 1237–1251. [Google Scholar] [CrossRef]
- Deng, S.L.; Lin, Z.D.; Xu, B.F.; Lin, H.B.; Du, C.M. Effects of Carbon Fillers on Crystallization Properties and Thermal Conductivity of Poly(phenylene sulfide). Polym.-Plast. Technol. 2015, 54, 1017–1024. [Google Scholar] [CrossRef]
- Shin, Y.C.; Novin, E.; Kim, H. Electrical and Thermal Conductivities of Carbon Fiber Composites with High Concentrations of Carbon Nanotubes. Int. J. Precis. Eng. Man. 2015, 16, 465–470. [Google Scholar] [CrossRef]
- Kornev, K.G.; Halverson, D.; Korneva, G.; Gogotsi, Y.; Friedman, G. Magnetostatic interactions between carbon nanotubes filled with magnetic nanoparticles. Appl. Phys. Lett. 2008, 92, 233117. [Google Scholar] [CrossRef]
- Korneva, G.; Ye, H.; Gogotsi, Y.; Halverson, D.; Friedman, G.; Bradley, J.C.; Kornev, K.G. Carbon Nanotubes Loaded with Magnetic Particles. Nano Lett. 2005, 5, 879–884. [Google Scholar] [CrossRef]
- Kong, L.; Yin, X.W.; Yuan, X.Y.; Zhang, Y.J.; Liu, X.M.; Cheng, L.F.; Zhang, L.T. Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites. Carbon 2014, 73, 185–193. [Google Scholar] [CrossRef]
- Chu, Z.Y.; Cheng, H.F.; Xie, W.; Sun, L.K. Effects of diameter and hollow structure on the microwave absorption properties of short carbon fibers. Ceram. Int. 2012, 38, 4867–4873. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.Q.; Xiao, S.T.; Qiang, C.W.; Tian, L.L.; Xu, J.C. Preparation and properties of cobalt oxides coated carbon fibers as microwave-absorbing materials. Appl. Surf. Sci. 2011, 257, 7678–7683. [Google Scholar] [CrossRef]
- Qiang, C.W.; Xu, J.C.; Zhang, Z.Q.; Tian, L.L.; Xiao, S.T.; Liu, Y.; Xu, P. Magnetic properties and microwave absorption properties of carbon fibers coated by Fe3O4 nanoparticles. J. Alloys Compd. 2010, 506, 93–97. [Google Scholar] [CrossRef]
- Wu, X.Y.; Tu, T.X.; Dai, Y.; Tang, P.P.; Zhang, Y.; Deng, Z.M.; Li, L.L.; Zhang, H.B.; Yu, Z.Z. Direct Ink Writing of Highly Conductive MXene Frames for Tunable Electromagnetic Interference Shielding and Electromagnetic Wave-Induced Thermochromism. Nano-Micro. Lett. 2021, 13, 148. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.M.; Tang, P.P.; Wu, X.Y.; Zhang, H.B.; Yu, Z.Z. Superelastic, Ultralight, and Conductive Ti3C2Tx MXene/Acidified Carbon Nanotube Anisotropic Aerogels for Electromagnetic Interference Shielding. ACS. Appl. Mater. Interfaces 2021, 13, 20539–20547. [Google Scholar] [CrossRef]
- Gao, J.S.; Wang, H.H.; Zhou, Y.; Liu, Z.M.; He, Y. Self-template and in-situ synthesis strategy to construct MnO2/Mn3O4@Ni-Co/GC nanocubes for efficient microwave absorption properties. J. Alloy Compd. 2022, 892, 162151. [Google Scholar] [CrossRef]
- Liang, Y.Y.; Li, Y.G.; Wang, H.L.; Zhou, J.G.; Wang, J.; Regier, T.; Dai, H.J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786. [Google Scholar] [CrossRef] [Green Version]
- Eerenstein, W.; Mathur, N.D.; Scott, J.F. Multiferroic and magnetoelectric materials. Nature 2006, 442, 759–765. [Google Scholar] [CrossRef]
- Ohlan, A.; Singh, K.; Chandra, A.; Dhawan, S.K. Microwave absorption properties of conducting polymer composite with barium ferrite nanoparticles in 12.4–18 GHz. Appl. Phys. Lett. 2008, 93, 053114. [Google Scholar] [CrossRef]
- Xu, H.F.; Zhang, H.J.; Lv, T.; Wei, H.W.; Song, F. Study on Fe3O4/polyaniline electromagnetic composite hollow spheres prepared against sulfonated polystyrene colloid template. Colloid. Polym. Sci. 2013, 291, 1713–1720. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, A.P.; Kumari, S.; Srivastava, A.K.; Bathula, S.; Dhawan, S.K.; Duttab, P.K.; Dhar, A. EM shielding effectiveness of Pd-CNT-Cu nanocomposite buckypaper. J. Mater. Chem. A 2015, 3, 13986–13993. [Google Scholar] [CrossRef]
- Li, D.X.; Zhou, X.W.; Guo, X.J.; Yuan, B.; Liu, Y.J.; Ortega, C.M.; Sun, L.; Liu, Z. A novel Fe3O4/buckypaper composite as free-standing anode for lithium-ion battery. J. Alloy Compd. 2016, 657, 109–114. [Google Scholar] [CrossRef]
- Chaudhary, A.; Kumar, R.; Teotia, S.; Dhawan, S.K.; Dhakate, S.R.; Kumari, S. Integration of MCMBs/MWCNTs with Fe3O4 in a flexible and light weight composite paper for promising EMI shielding applications. J. Mater. Chem. C 2017, 5, 322–332. [Google Scholar] [CrossRef]
- Rao, B.V.B.; Chengappa, M.; Kale, S.N. Lightweight, flexible and thin Fe3O4-loaded, functionalized multi walled carbon nanotube buckypapers for enhanced X-band electromagnetic interference shielding. Mater. Res. Express. 2017, 4, 045012. [Google Scholar]
- Li, S.L.; He, Y.; Jing, C.W.; Gong, X.B.; Cui, L.L.; Cheng, Z.Y.; Zhang, C.Q.; Nan, F. A novel preparation and formation mechanism of carbon nanotubes aerogel. Carbon Lett. 2018, 28, 16–23. [Google Scholar]
- Li, S.L.; Zhang, C.Q.; He, Y.; Feng, M.; Ma, C.; Cui, Y. Multi-interpolation mixing effects under the action of micro-scale free arc. J. Mater. Process. Technol. 2019, 271, 645–650. [Google Scholar] [CrossRef]
- Uetani, K.; Takahashi, K.; Watanabe, R.; Tsuneyasu, S.; Satoh, T. Thermal Diffusion Films with In-Plane Anisotropy by Aligning Carbon Fibers in a Cellulose Nanofiber Matrix. ACS. Appl. Mater. Inter. 2022, 14, 33903–33911. [Google Scholar] [CrossRef]
- Nagai, H.; Fujita, K.; Urabe, K.; Iwashita, N. FEM analysis of flexural modulus of carbon fiber monofilament considering anisotropy. Adv. Compos. Mater. 2022, 31, 137–150. [Google Scholar] [CrossRef]
- Danlee, Y.; Bailly, C.; Huynen, I. Thin and flexible multilayer polymer composite structures for effective control of microwave electromagnetic absorption. Compos. Sci. Technol. 2014, 100, 182–188. [Google Scholar] [CrossRef]
- Yang, L.; Fan, H.L.; Liu, J.; Ma, Y.; Zheng, Q. Hybrid lattice-core sandwich composites designed for microwave absorption. Mater. Des. 2013, 50, 863–871. [Google Scholar] [CrossRef]
- Agarwal, P.R.; Kumar, R.; Kumari, S.; Dhakate, S.R. Three-dimensional and highly ordered porous carbon-MnO2 composite foam for excellent electromagnetic interference shielding efficiency. RSC Adv. 2016, 6, 100713–100722. [Google Scholar] [CrossRef]
- Kumar, R.; Dhakate, S.R.; Saini, P.; Mathur, R.B. Improved electromagnetic interference shielding effectiveness of light weight carbon foam by ferrocene accumulation. RSC Adv. 2013, 3, 4145–4151. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Ruan, K.P.; Gu, J.W. Flexible Sandwich-Structured Electromagnetic Interference Shielding Nanocomposite Films with Excellent Thermal Conductivities. Small 2021, 17, 10. [Google Scholar] [CrossRef] [PubMed]
- Al-Saleh, M.H.; Saadeh, W.H.; Sundararaj, U. EMI shielding effectiveness of carbon based nanostructured polymeric materials: A comparative study. Carbon 2013, 60, 146–156. [Google Scholar] [CrossRef]
- Li, S.L.; Zhang, C.Q.; Fu, J.F.; Zhou, Y.S.; Sun, J.Q.; He, Y.; Nan, F.; Yu, Z.Z. Interfacial modification of carbon fiber by carbon nanotube gas-phase dispersion. Compos. Sci. Technol. 2020, 195, 108196. [Google Scholar] [CrossRef]
- Zhang, M.; Ding, L.; Zheng, J.; Liu, L.B.; Alsulami, H.; Kutbi, M.A.; Xu, J.L. Surface modification of carbon fibers with hydrophilic Fe3O4 nanoparticles for nickel-based multifunctional composites. Appl. Surf. Sci. 2020, 509, 145348. [Google Scholar] [CrossRef]
- Panupakorn, P.; Chaichana, E.; Praserthdam, P.; Jongsomjit, B. Polyethylene/Clay Nanocomposites Produced by In Situ Polymerization with Zirconocene/MAO Catalyst. J. Nanomater. 2013, 2013, 154874. [Google Scholar] [CrossRef] [Green Version]
- Mueller, F.; Bresser, D.; Paillard, E.; Winter, M.; Passerini, S. Influence of the carbonaceous conductive network on the electrochemical performance of ZnFe2O4 nanoparticles. J. Power Sources. 2013, 236, 87–94. [Google Scholar] [CrossRef]
- Pan, Y.; Zeng, W.J.; Li, L.; Zhang, Y.Z.; Dong, Y.N.; Ye, K.; Cheng, K.; Cao, D.X.; Wang, G.L.; Lucht, B.L. Surfactant assisted, one-step synthesis of Fe3O4 nanospheres and further modified Fe3O4/C with excellent lithium storage performance. J. Electroanal. Chem. 2018, 810, 248–254. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, P.H.; Zhao, W.J.; Lu, J.; Zhao, J.H. Raman study of ultrathin Fe3O4 films on GaAs(001) substrate: Stoichiometry, epitaxial orientation and strain. J. Raman Spectrosc. 2011, 42, 1388–1391. [Google Scholar] [CrossRef]
- Wang, L.P.; Huang, Y.B.; Lai, Y.H. Surface enhanced Raman scattering activity of dual-functional Fe3O4/Au composites. Appl. Surf. Sci. 2018, 435, 290–296. [Google Scholar] [CrossRef]
- Belin, T.; Epron, F. Characterization methods of carbon nanotubes: A review. Mat. Sci. Eng. B 2005, 119, 105–118. [Google Scholar] [CrossRef]
- Pan, L.; Tang, J.; Chen, Y.H. Synthesis of Fe3O4, Fe2O3, Ag/Fe3O4 and Ag/Fe2O3 nanoparticles and their electrocatalytic properties. Sci. China Chem. 2013, 56, 362–369. [Google Scholar] [CrossRef]
- Pop, E.; Mann, D.; Wang, Q.; Goodson, K.; Da, H. Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature. Nano Lett. 2006, 6, 96–100. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.Q.; Qiu, H.; Ruan, K.P.; Wang, S.S.; Zhang, Y.L.; Gu, J.W. Flexible and insulating silicone rubber composites with sandwich structure for thermal management and electromagnetic interference shielding. Compos. Sci. Technol. 2022, 219, 109253. [Google Scholar] [CrossRef]
- Bily, M.A.; Kwon, Y.W.; Pollak, R.D. Study of Composite Interface Fracture and Crack Growth Monitoring Using Carbon Nanotubes. Appl. Compos. Mater. 2010, 17, 347–362. [Google Scholar] [CrossRef]
- Zheng, Y.D.; Wang, R.; Dong, X.Y.; Wu, L.X.; Zhang, X. High Strength Conductive Polyamide 6 Nanocomposites Reinforced by Prebuilt Three-Dimensional Carbon Nanotube Networks. ACS Appl. Mater. Interfaces 2018, 10, 28103–28111. [Google Scholar] [CrossRef]
- Kim, P.; Shi, L.; Majumdar, A.; Mceuen, P.L. Thermal Transport Measurements of Individual Multiwalled NanoTubes. Phys. Rev. Lett. 2001, 87, 215502. [Google Scholar] [CrossRef] [Green Version]
- Kausar, A.; Ahmad, S.; Salman, S.M. Effectiveness of Polystyrene/Carbon Nanotube Composite in Electromagnetic Interference Shielding Materials: A Review. Polym.-Plast. Technol. 2017, 56, 1027–1042. [Google Scholar] [CrossRef]
- Ebbesen, T.W.; Lezec, H.J.; Hiura, H.; Bennett, J.W.; Ghaemi, H.F.; Thio, T. Electrical conductivity of individual carbon nanotubes. Nature 1996, 382, 54–56. [Google Scholar] [CrossRef]
- Haghgoo, M.; Ansari, R.; Hassanzadeh-Aghdam, M.K. Prediction of electrical conductivity of carbon fiber-carbon nanotube-reinforced polymer hybrid composites. Compos. Part B-Eng. 2019, 167, 728–735. [Google Scholar] [CrossRef]
- Ji, X.Y.; Matsuo, S.; Sottos, N.R.; Cahill, D.G. Anisotropic thermal and electrical conductivities of individual polyacrylonitrile-based carbon fibers. Carbon 2022, 197, 1–9. [Google Scholar] [CrossRef]
- Bagheli, S.; Fadafan, H.K.; Orimi, R.L.; Ghaemi, M. Synthesis and experimental investigation of the electrical conductivity of water based magnetite nanofluids. Powder Technol. 2015, 274, 426–430. [Google Scholar] [CrossRef]
- Qiao, M.T.; Li, J.X.; Wei, D.; He, X.W.; Lei, X.F.; Wei, J.; Zhang, Q.Y. Chain-like Fe3O4@void@mSiO2@MnO2 composites with multiple porous shells toward highly effective microwave absorption application. Micropor. Mesopor. Mat. 2021, 314, 110867. [Google Scholar] [CrossRef]
- Zhang, P.; Ding, X.; Wang, Y.Y.; Gong, Y.; Zheng, K.; Chen, L.; Tian, X.Y.; Zhang, X. Segregated double network enabled effective electromagnetic shielding composites with extraordinary electrical insulation and thermal conductivity. Compos. Part A-Appl. S. 2019, 117, 56–64. [Google Scholar] [CrossRef]
- Feng, C.P.; Wan, S.S.; Wu, W.C.; Bai, L.; Bao, R.Y.; Liu, Z.Y.; Yang, M.B.; Chen, J.; Yang, W. Electrically insulating, layer structured SiR/GNPs/BN thermal management materials with enhanced thermal conductivity and breakdown voltage. Compos. Sci. Technol. 2018, 167, 456–462. [Google Scholar] [CrossRef]
- Huang, S.; Wang, L.; Li, Y.C.; Liang, C.B.; Zhang, J.L. Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J. Appl. Polym. Sci. 2021, 138, 50649. [Google Scholar] [CrossRef]
- Liu, Z.S.; Zhang, Y.; Zhang, H.B.; Dai, Y.; Liu, J.; Li, X.F.; Yu, Z.Z. Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. J. Mater. Chem. C 2020, 8, 1673–1678. [Google Scholar] [CrossRef]
- Luo, J.Q.; Zhao, S.; Zhang, H.B.; Deng, Z.M.; Li, L.L.; Yu, Z.Z. Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos. Sci. Technol. 2019, 182, 107754. [Google Scholar] [CrossRef]
- Liu, Z.F.; Ge, H.Y.; Wu, J.M.; Chen, J. Enhanced electromagnetic interference shielding of carbon fiber/cement composites by adding ferroferric oxide nanoparticles. Constr. Build. Mater. 2017, 151, 575–581. [Google Scholar] [CrossRef]
- Gholampour, M.; Movassagh-Alanagh, F.; Salimkhani, H. Fabrication of nano-Fe3O4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method. Solid State Sci. 2017, 64, 51–61. [Google Scholar] [CrossRef]
- Movassagh-Alanagh, F.; Bordbar-Khiabani, A.; Ahangari-Asl, A. Three-phase PANI@nano-Fe3O4@CFs heterostructure: Fabrication, characterization and investigation of microwave absorption and EMI shielding of PANI@nano-Fe3O4@CFs/epoxy hybrid composite. Compos. Sci. Technol. 2017, 150, 65–78. [Google Scholar] [CrossRef]
- Zhang, X.M.; Zhang, J.J.; Xia, L.C.; Wang, J.F.; Li, C.H.; Xu, F.; Zhang, X.L.; Wu, H.; Guo, S.Y. Achieving high-efficiency and robust 3D thermally conductive while electrically insulating hybrid filler network with high orientation and ordered distribution. Chem. Eng. J. 2018, 334, 247–256. [Google Scholar] [CrossRef]
- Wan, X.R.; Lu, H.; Kang, J.F.; Li, S.; Yue, Y.L. Preparation of graphene-glass fiber-resin composites and its electromagnetic shielding performance. Compos. Interface 2018, 25, 883–900. [Google Scholar] [CrossRef]
- Yim, Y.J.; Rhee, K.Y.; Park, S.J. Electromagnetic interference shielding effectiveness of nickel-plated MWCNTs/high-density polyethylene composites. Compos. Part B-Eng. 2016, 98, 120–125. [Google Scholar] [CrossRef]
- Feng, A.; Jia, Z.; Yu, Q.; Zhang, H.; Wu, G. Preparation and Characterization of Carbon Nanotubes/Carbon Fiber/Phenolic Composites on Mechanical and Thermal Conductivity Properties. Nano 2018, 13, 1850037. [Google Scholar] [CrossRef]
Experiment Group | Spraying and Roll Treatment | Filler | The Amount of CNT + Fe3O4 (mg/cm3) | The Content of (CNT/Fe3O4) | |
CF-0 | None | None | 0 | 0 | |
CF-2 | ①⑧ | CNT and Fe3O4 | 0.04 + 0.12 = 0.16 | 0.011 wt% | |
CF-4 | ①②⑦⑧ | 0.08 + 0.24 = 0.32 | 0.023 wt% | ||
CF-6 | ①②③⑥⑦⑧ | 0.12 + 0.36 = 0.48 | 0.034 wt% | ||
CF-7 | ①②③⑤⑥⑦⑧ | 0.14 + 0.42 = 0.56 | 0.040 wt% | ||
CF-8 | ①②③④⑤⑥⑦⑧ | 0.16 + 0.48 = 0.64 | 0.045 wt% |
Sample | Loading | λ (W/(m·K)) | σ (S/cm) | Specific EMI SE (dB) | Thickness of Sample (mm) | Frequency Range (GHz) | Ref. |
---|---|---|---|---|---|---|---|
Fe3O4/CFs/Cement | 0.4 wt% CF + 5wt% Fe3O4 | - | - | 29.8 | 7 | 8.2–12.4 | [70] |
CF@Fe3O4/EP | 20 wt% CF@Fe3O4 | - | - | 22.7 | 2 | 8.2–12.4 | [71] |
PANI@nano-Fe3O4@CFs | 5 wt% of absorbing segments | - | - | 29 | 3 | 8.2–18 | [72] |
Gt-MWCNT/SiC/ HDPE | 23.1 vol% Gt-MWCNT + 11.3 vol% SiC | - | - | 14 | 2 | 8–12 | [73] |
RGO@GF/EP | 40 wt% RGO-GF | - | - | 21.3 | 10 | 8.2–12.4 | [74] |
PVDF@MWCNT/ BN | 5 wt% MWCNT + 40 wt% BN | - | - | 4.34 | 2 | 8–12 | [65] |
Ni@MWCNTs/HDPE | 3 wt% Ni@MWCNTs | - | - | 12 | 3 | 0.5–1.5 | [75] |
CNTs-CFs/PF | 25 wt% CNTs and 40 wt% PF resin | 0.636 | - | - | - | - | [76] |
Dry fabric/CNT mat | 1.06 wt% CNT | 1.386 | - | - | - | - | [17] |
CF + CNT | 60 wt% CF and 40 wt% resin CF speed 0.01 m/s | - | 1.4 | - | - | - | [45] |
CF@(CNT/Fe3O4)/EP-CFs | 0.045 wt% CNT/Fe3O4 | 1.1 | 7.7 | 30.5 | 2 | 8.2–12.4 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Bi, L.; Shi, S.; Wang, H.; Zhang, D.; He, Y.; Li, W. Two-Steps Method to Prepare Multilayer Sandwich Structure Carbon Fiber Composite with Thermal and Electrical Anisotropy and Electromagnetic Interference Shielding. Materials 2023, 16, 680. https://doi.org/10.3390/ma16020680
Zhang C, Bi L, Shi S, Wang H, Zhang D, He Y, Li W. Two-Steps Method to Prepare Multilayer Sandwich Structure Carbon Fiber Composite with Thermal and Electrical Anisotropy and Electromagnetic Interference Shielding. Materials. 2023; 16(2):680. https://doi.org/10.3390/ma16020680
Chicago/Turabian StyleZhang, Chuanqi, Lansen Bi, Song Shi, Huanhuan Wang, Da Zhang, Yan He, and Wei Li. 2023. "Two-Steps Method to Prepare Multilayer Sandwich Structure Carbon Fiber Composite with Thermal and Electrical Anisotropy and Electromagnetic Interference Shielding" Materials 16, no. 2: 680. https://doi.org/10.3390/ma16020680
APA StyleZhang, C., Bi, L., Shi, S., Wang, H., Zhang, D., He, Y., & Li, W. (2023). Two-Steps Method to Prepare Multilayer Sandwich Structure Carbon Fiber Composite with Thermal and Electrical Anisotropy and Electromagnetic Interference Shielding. Materials, 16(2), 680. https://doi.org/10.3390/ma16020680