In Situ Synthesis of Hierarchical Flower-like Sn/SnO2 Heterogeneous Structure for Ethanol GAS Detection
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Summary and Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hastir, A.; Kohli, N.; Singh, R.C. Ag Doped ZnO Nanowires as Highly Sensitive Ethanol Gas Sensor. Mater. Today Proc. 2017, 4, 9476–9480. [Google Scholar] [CrossRef]
- Shen, C.; Xu, N.; Guan, R.F.; Yue, L.; Zhang, W.H. Highly sensitive ethanol gas sensor based on In2O3 spheres. Mol. Hum. Reprod. 2021, 8, 3647–3653. [Google Scholar] [CrossRef]
- Choi, J.W.; Lee, C.M.; Park, C.H.; Lim, J.H.; Park, G.C.; Joo, J. Effect of Annealing Temperature on Morphology and Electrical Property of Hydrothermally-Grown ZnO Nanorods/p-Si Heterojunction Diodes. J. Nanosci. Nanotechnol. 2019, 19, 1640–1644. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Gao, J.; Chen, P.; Zhan, C.; Yang, Y.; Wang, Z.; Yang, Y.; Yang, L.; Yuan, C. Interface engineering of Fe2O3@Co3O4 nanocubes for enhanced triethylamine sensing performance. Ind. Eng. Chem. Res. 2022, 61, 8057–8068. [Google Scholar] [CrossRef]
- Qin, Z.; Xu, K.; Yue, H.; Wang, H.; Zhang, J.; Ouyang, C.; Xie, C.; Zeng, D. Enhanced room-temperature NH3 gas sensing by 2D SnS2 with sulfur vacancies synthesized by chemical exfoliation. Sens. Actuators B-Chem. 2018, 262, 771–779. [Google Scholar] [CrossRef]
- Bai, H.; Guo, H.; Tan, Y.; Wang, J.; Zheng, J. Facile synthesis of mesoporous CdS/PbS/SnO2 composites for high-selectivity H2 gas sensor. Sens. Actuators B-Chem. 2021, 340, 129924. [Google Scholar] [CrossRef]
- Liu, W.; Si, X.H.; Chen, Z.P.; Xu, L.; Guo, J.M.; Wei, L.; Cheng, G.; Du, Z.L. Fabrication of a humidity-resistant formaldehyde gas sensor through layering a molecular sieve on 3D ordered macroporous SnO2 decorated with Au nanoparticles. J. Alloys Compd. 2022, 919, 165788. [Google Scholar] [CrossRef]
- Xu, K.; Tian, S.; Zhu, J.; Yang, Y.; Shi, J.; Yu, T.; Yuan, C. High selectivity of sulfur doped SnO2 in NO2 detection at lower operating temperature. Nanoscale 2018, 10, 20761–20771. [Google Scholar] [CrossRef]
- Bulemo, P.M.; Cho, H.J.; Kim, N.H.; Kim, I.D. Mesoporous SnO2 Nanotubes via Electrospinning–Etching Route: Highly Sensitive and Selective Detection of H2S Molecule. ACS Appl. Mater. Interfaces 2017, 9, 26304–26313. [Google Scholar] [CrossRef]
- Xu, K.; Li, N.; Zeng, D.; Tian, S.; Zhang, S.; Hu, D.; Xie, C. Interface bonds determined gas-sensing of SnO2–SnS2 hybrids to ammonia at room temperature. ACS Appl. Mater. Interfaces 2015, 7, 11359–11368. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Y.; Wang, W.D.; Xue, Y.; Li, P.W.; Lian, K.; Chen, L.; Zhang, W.D.; Zhuiykov, S. Enhancement of the acetone sensing capabilities to ppb detection level by Fe-doped three-dimensional SnO2 hierarchical microstructures fabricated via a hydrothermal method. J. Mater. Sci. 2017, 52, 11554–11568. [Google Scholar] [CrossRef]
- Xu, H.Y.; Li, J.Z.; Li, P.D.; Shi, J.J.; Gao, X.W. Effect of rare earth doping on electronic and gas-sensing properties of SnO2 nanostructures. J. Alloys Compd. 2022, 909, 164687. [Google Scholar] [CrossRef]
- Zhou, S.Q.; Wang, H.P.; Hu, J.C.; Lv, T.P.; Rong, Q.; Zhang, Y.M.; Zi, B.Y.; Chen, M.P.; Zhang, D.M.; Wei, J.; et al. Formaldehyde gas sensor with extremely high response employing cobalt-doped SnO2 ultrafine nanoparticles. Nanoscale Adv. 2022, 4, 824–836. [Google Scholar] [CrossRef] [PubMed]
- Du, L.Y.; Sun, H.M. Facile synthesis of ZnO/SnO2 hybrids for highly selective and sensitive detection of formaldehyde. New J. Chem. 2022, 46, 5573–5580. [Google Scholar] [CrossRef]
- Xu, X.L.; Liu, W.W.; Wang, S.Y.; Wang, X.P.; Chen, Y.; Zhang, G.H.; Ma, S.Y.; Pei, S.T. Design of high-sensitivity ethanol sensor based on Pr-doped SnO2 hollow beaded tubular nanostructure. Vacuum 2021, 189, 110244. [Google Scholar] [CrossRef]
- Meng, X.; Bi, M.; Gao, W. Rapid response hydrogen sensor based on Pd@Pt/SnO2 hybrids at near-ambient temperature. Sens. Actuators B-Chem. 2022, 370, 132406. [Google Scholar] [CrossRef]
- Ma, Q.; Chu, S.; Liu, Y. Construction of SnS2/ZIF-8 derived flower-like porous SnO2/ZnO heterostructures with enhanced triethylamine gas sensing performance. Mater. Lett. 2018, 236, 452–455. [Google Scholar] [CrossRef]
- Wei, F.; Zhang, H.; Nguyen, M.; Ying, M.; Gao, R.; Zheng, J. Template-free synthesis of flower-like SnO2 hierarchical nanostructures with improved gas sensing performance. Sens. Actuators B-Chem. 2015, 215, 15–23. [Google Scholar] [CrossRef]
- Xue, D.; Wang, Y.; Cao, J.; Sun, G.; Zhang, Z. Improving methane gas sensing performance of flower-like SnO2 decorated by WO3 nanoplates. Talanta 2019, 199, 603–611. [Google Scholar] [CrossRef]
- Hou, M.; Gao, J.; Yang, L.; Guo, S.H.; Hu, T.; Li, Y.X. Room temperature gas sensing under UV light irradiation for Ti3C2Tx MXene derived lamellar TiO2-C/g-C3N4 composites. Appl. Surf. Sci. 2021, 535, 147666. [Google Scholar] [CrossRef]
- He, J.; Zhao, Z.; Zhang, L.; Jiao, W.L. Gas sensing performances of commercial carbon fibers functionalized by NiO/SnO2 composite. Semicond. Sci. Technol. 2022, 37, 055018. [Google Scholar] [CrossRef]
- Koh, H.J.; Kim, S.J.; Maleski, K.; Cho, S.Y.; Kim, Y.J.; Ahn, C.W.; Gogotsi, Y.; Jung, H.T. Enhanced Selectivity of MXene Gas Sensors through Metal Ion Intercalation: In Situ X-ray Diffraction Study. ACS Sens. 2019, 4, 1365–1372. [Google Scholar] [CrossRef]
- Gu, C.P.; Cui, Y.W.; Wang, L.Y.; Sheng, E.H.; Shim, J.J.; Huang, J.R. Synthesis of the porous NiO/SnO2 microspheres and microcubes and their enhanced formaldehyde gas sensing performance. Sens. Actuators B-Chem. 2017, 241, 298–307. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Sun, X.H. Electrospun nanowebs of NiO/SnO2 p-n heterojunctions for enhanced gas sensing. Appl. Surf. Sci. 2016, 389, 514–520. [Google Scholar] [CrossRef]
- Lee, K.S.; Shim, J.; Lee, J.S.; Lee, J.; Moon, H.G.; Park, Y.J.; Park, D.; Son, D.I. Adsorption behavior of NO2 molecules in ZnO-mono/multilayer graphene core–shell quantum dots for NO2 gas sensor. J. Ind. Eng. Chem. 2021, 106, 279–286. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Ma, S.Y.; Liu, W.W.; Yuan, F.Q.; Alhadi, A. Significant butanol gas sensor based on unique Bi2MoO6 porous microspheres and ZnO nanosheets composite nanomaterials. J. Alloys Compd. 2022, 911, 164877. [Google Scholar] [CrossRef]
- Syaahiran, M.A.; Mahadi, A.H.; Lim, C.M.; Kooh, M.R.R.; Chau, Y.F.C.; Chiang, H.P.; Thotagamuge, R. Theoretical Study of CO Adsorption Interactions with Cr-Doped Tungsten Oxide/Graphene Composites for Gas Sensor Application. ACS Omega 2021, 7, 528–539. [Google Scholar] [CrossRef]
- Paul, J.; Philip, J. Development of an ammonia gas sensor employing an inter-digital capacitive structure coated with Mn0.5Zn0.5Fe2O4 nano-composite. Mater. Today Proc. 2022, 49, 1331–1336. [Google Scholar] [CrossRef]
- Chen, D.; Yu, W.C.; Wei, L.; Ni, J.S.; Li, H.; Chen, Y.X.; Tian, Y.F.; Yan, S.S.; Mei, L.M.; Jiao, J. High-sensitive room temperature NO2 gas sensor based on the avalanche breakdown induced by Schottky junction in TiO2-Sn3O4 nanohetero junctions. J. Alloys Compd. 2022, 912, 165079. [Google Scholar] [CrossRef]
- Rani, N.; Khurana, K.; Jaggi, N. Spectroscopic analysis of SnO2 nanoparticles attached functionalized multiwalled carbon nanotubes. Surf. Interfaces 2021, 27, 101492. [Google Scholar] [CrossRef]
- Lian, X.; Li, Y.; Tong, X.Y.; Zou, X.; Liu, D.; An, D.; Wang, Q. Synthesis of Ce-doped SnO2 nanoparticles and their acetone gas sensing properties. Appl. Surf. Sci. 2017, 407, 447–455. [Google Scholar] [CrossRef]
- Yang, C.; Xiao, F.; Wang, J.; Su, X. 3D flower and 2D sheet-like CuO nanostructures: Microwave-assisted synthesis and application in gas sensors. Sens. Actuators B-Chem. 2015, 207, 177–185. [Google Scholar] [CrossRef]
- Al-Enizi, A.M.; Naushad, M.; Al-Muhtaseb, A.H. Synthesis and characterization of highly selective and sensitive Sn/SnO2/N-doped carbon nanocomposite (Sn/SnO2@NGC) for sensing toxic NH3 gas. Chem. Eng. J. 2018, 345, 58–66. [Google Scholar] [CrossRef]
- Lu, W.; Ding, D.; Xue, Q.; Du, Y.; Xiong, Y.; Zhang, J.; Pan, X.; Xing, W. Great enhancement of CH4 sensitivity of SnO2 based nanofibers by heterogeneous sensitization and catalytic effect. Sens. Actuators B-Chem. 2018, 254, 393–401. [Google Scholar] [CrossRef]
- Yang, S.J.; Wang, R.; Dong, L.; Zhang, Z.; Zhu, X. One-pot synthesis of SnO2 hollow microspheres and their formaldehyde sensor application. Mater. Lett. 2016, 184, 9–12. [Google Scholar] [CrossRef]
- Shooshtari, M.; Salehi, A.; Vollebregt, S. Effect of temperature and humidity on the sensing performance of TiO2 nanowire-based ethanol vapor sensors. Nanotechnology 2021, 32, 325501. [Google Scholar] [CrossRef]
- Jin, T.; Chen, F.Y.; Guo, L.F.; Tang, Q.; Wang, J.P.; Pan, B.W.; Wu, Y.; Yu, S.J. Pd4O3 Subsurface Oxide on Pd (111) Formed during Oxygen Adsorption-Induced Surface Reconstruction and Its Activity toward Formate Oxidation Reactions. J. Phys. Chem. 2021, 125, 19497–19508. [Google Scholar] [CrossRef]
- Fang, Z.T.; Li, L.; Dixon, D.A.; Fushimi, R.R.; Dufek, E.J. Nature of Oxygen Adsorption on Defective Carbonaceous Materials. J. Phys. Chem. C 2021, 125, 20686–20696. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, M.; Kumar, R.; Singh, R.; Prasad, B.; Kumar, D. Numerical model for the chemical adsorption of oxygen and reducing gas molecules in presence of humidity on the surface of semiconductor metal oxide for gas sensors applications. Mat. Sci. Semicond. Proc. 2018, 90, 236–244. [Google Scholar] [CrossRef]
- Rong, Q.; Xiao, B.; Zeng, J.Y.; Yu, R.H.; Zi, B.Y.; Zhang, G.L.; Zhu, Z.Q.; Zhang, J.; Wu, J.S.; Liu, Q.J. Pt Single Atom-Induced Activation Energy and Adsorption Enhancement for an Ultrasensitive ppb-Level Methanol Gas Sensor. ACS Sens. 2021, 7, 199–206. [Google Scholar] [CrossRef]
- Yuan, G.T.; Zhang, H.; Cheng, Y.F.; Zhong, Y.H.; Zhuo, Q.Q.; Sun, X.H. Hollow polyhedral ZnCo2O4 superstructure as an ethanol gas sensor and sensing mechanism study using near ambient pressure XPS. J. Mater. Chem. 2021, 9, 14278–14285. [Google Scholar] [CrossRef]
- Pienutsa, N.; Roongruangsree, P.; Seedokbuab, V.; Yannawibut, K.; Phatoomvijitwong, C.; Srinives, S. SnO2-Graphene composite gas sensor for a room temperature detection of ethanol. Nanotechnology 2021, 32, 115502. [Google Scholar] [CrossRef] [PubMed]
- Lopez, P.C.; Feldman, H.; Mauricio-Iglesias, M.; Junicke, H.; Huusom, J.K.; Gernaey, K.V. Benchmarking real-time monitoring strategies for ethanol production from lignocellulosic biomass. Biomass Bioenergy 2021, 127, 105296. [Google Scholar] [CrossRef]
- Shihabudeen, P.K.; Chaudhuri, A.R. Nitrogen doped In2O3-ZnO nanocomposite thin film based sensitive and selective ethanol sensor. Nanoscale 2022, 14, 5185–5193. [Google Scholar] [CrossRef] [PubMed]
Sensing Material | Detection Gas | Con. (ppm) | Tem. (°C) | Res/Rec (s) | Response | Ref. |
---|---|---|---|---|---|---|
Ce-SnO2 spheres | acetone | 100 | 250 | 17/38 | 11.9 | [31] |
flower-like CuO | ethanol | 1000 | 260 | 5/15 | 4 | [32] |
Sn/SnO2@NGC | NH3 | 300 | R.T | 148/136 | 142.2 | [33] |
SnO nanofiber-Pt | methane | 1000 | 350 | 24/141 | 4.5 | [34] |
SnO2 hollow microspheres | HCHO | 100 | 300 | 30/30 | 7 | [35] |
flower-like Sn/SnO2 | ethanol | 1000 | 250 | 4/40 | 17.46 | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Yang, L.; Guo, S.; Hou, M.; Ma, Y. In Situ Synthesis of Hierarchical Flower-like Sn/SnO2 Heterogeneous Structure for Ethanol GAS Detection. Materials 2023, 16, 792. https://doi.org/10.3390/ma16020792
Zhu Y, Yang L, Guo S, Hou M, Ma Y. In Situ Synthesis of Hierarchical Flower-like Sn/SnO2 Heterogeneous Structure for Ethanol GAS Detection. Materials. 2023; 16(2):792. https://doi.org/10.3390/ma16020792
Chicago/Turabian StyleZhu, Ye, Li Yang, Shenghui Guo, Ming Hou, and Yanjia Ma. 2023. "In Situ Synthesis of Hierarchical Flower-like Sn/SnO2 Heterogeneous Structure for Ethanol GAS Detection" Materials 16, no. 2: 792. https://doi.org/10.3390/ma16020792
APA StyleZhu, Y., Yang, L., Guo, S., Hou, M., & Ma, Y. (2023). In Situ Synthesis of Hierarchical Flower-like Sn/SnO2 Heterogeneous Structure for Ethanol GAS Detection. Materials, 16(2), 792. https://doi.org/10.3390/ma16020792