A Highly Versatile X-ray and Electron Beam Diamond Dosimeter for Radiation Therapy and Protection
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterization under Low-Energy Continuous X-rays
3.2. Characterization under High-Energy Pulsed X-rays
3.3. Characterization under High-Energy Pulsed Electron Beams
4. Conclusions
- (1)
- The almost equal sensitivity values found under 6 MeV X-rays and 6 MeV electrons;
- (2)
- The agreement between the ratio of the sensitivities evaluated under low- and high-energy X-rays and the ratio of the respective mass attenuation coefficients in carbon;
- (3)
- The extremely low limit of detection found under low-energy X-rays.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenblatt, E.; Zubizarreta, E. Why radiotherapy works. In Radiotherapy in Cancer Care: Facing the Global Challenge; International Atomic Energy Agency (IAEA): Wien, Austria, 2017; pp. 95–105. Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/P1638_web.pdf (accessed on 14 October 2022).
- Paunesku, T.; Woloschak, G.E. Future directions of intraoperative radiation therapy: A brief review. Front. Oncol. 2018, 7, 300. [Google Scholar] [CrossRef] [Green Version]
- Di Martino, F.; Giannelli, M.; Traino, A.C.; Lazzeri, M. Ion recombination correction for very high dose-per-pulse high-energy electron beams. Phys. Med. 2005, 32, 2204–2210. [Google Scholar] [CrossRef] [PubMed]
- Hensley, F.W. Present state and issues in IORT physics. Radiat. Oncol. 2017, 12, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.; Gibbons, J.P. Intensity-modulated radiation therapy. In Khan’s the Physics of Radiation Therapy, 5th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014; pp. 430–489. [Google Scholar]
- Teoh, M.; Clark, C.H.; Wood, K.; Whitaker, K.; Nisbet, A. Volumetric modulated arc therapy: A review of current literature and clinical use in practice. Br. J. Radiol. 2011, 84, 967–996. [Google Scholar] [CrossRef] [PubMed]
- IAEA. Technical Reports Series No. 398. Absorbed Dose Determination in External Beam Radiotherapy. An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water; International Atomic Energy Agency (IAEA): Wien, Austria, 2000; pp. 84–133. Available online: https://www-pub.iaea.org/MTCD/publications/PDF/TRS398_scr.pdf (accessed on 23 October 2022).
- Girolami, M.; Allegrini, P.; Conte, G.; Trucchi, D.M.; Ralchenko, V.G.; Salvatori, S. Diamond detectors for UV and X-ray source imaging. IEEE Electron Device Lett. 2012, 33, 224–226. [Google Scholar] [CrossRef]
- Salvatori, S.; Girolami, M.; Oliva, P.; Conte, G.; Bolshakov, A.; Ralchenko, V.; Konov, V. Diamond device architectures for UV laser monitoring. Laser Phys. 2016, 26, 84005. [Google Scholar] [CrossRef]
- Girolami, M.; Serpente, V.; Mastellone, M.; Tardocchi, M.; Rebai, M.; Xiu, Q.; Liu, J.; Sun, Z.; Valentini, V.; Trucchi, D.M. Self-powered solar-blind ultrafast UV-C diamond detectors with asymmetric Schottky contacts. Carbon 2022, 189, 27–36. [Google Scholar] [CrossRef]
- Mainwood, A. Recent developments of diamond detectors for particles and UV radiation. Semicond. Sci. Technol. 2000, 15, R55. [Google Scholar] [CrossRef]
- Planskoy, B. Evaluation of diamond radiation dosemeters. Phys. Med. Biol. 1980, 25, 519–532. [Google Scholar] [CrossRef]
- Gorka, B.; Nilsson, B.; Svensson, R.; Brahme, A.; Ascarelli, P.; Trucchi, D.M.; Conte, G.; Kalish, R. Design and characterization of a tissue-equivalent CVD-diamond detector for clinical dosimetry in high-energy photon beams. Phys. Med. 2008, 24, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Descamps, C.; Tromson, D.; Tranchant, N.; Isambert, A.; Bridier, A.; De Angelis, C.; Onori, S.; Bucciolini, M.; Bergonzo, P. Clinical studies of optimised single crystal and polycrystalline diamonds for radiotherapy dosimetry. Radiat. Meas. 2008, 43, 933–938. [Google Scholar] [CrossRef]
- Almaviva, S.; Ciancaglioni, I.; Consorti, R.; De Notaristefani, F.; Manfredotti, C.; Marinelli, M.; Milani, E.; Petrucci, A.; Prestopino, G.; Verona, C.; et al. Synthetic single crystal diamond dosimeters for Intensity Modulated Radiation Therapy applications. Nucl. Instrum. Meth. Phys. Res. A 2009, 608, 191–194. [Google Scholar] [CrossRef]
- Marsolat, F.; Tromson, D.; Tranchant, N.; Pomorski, M.; Le Roy, M.; Donois, M.; Moignau, F.; Ostrowsky, A.; De Carlan, L.; Bassinet, C.; et al. A new single crystal diamond dosimeter for small beam: Comparison with different commercial activedetectors. Phys. Med. Biol. 2013, 58, 7647–7660. [Google Scholar] [CrossRef]
- Piliero, M.A.; Hugtenburg, R.P.; Ryde, S.J.S.; Oliver, K. Development of CVD diamond detectors for clinical dosimetry. Radiat. Phys. Chem. 2014, 104, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Prestopino, G.; Santoni, E.; Verona, C.; Verona-Rinati, G. Diamond Based Schottky Photodiode for Radiation Therapy In Vivo Dosimetry. Mater. Sci. Forum 2017, 879, 95–100. [Google Scholar] [CrossRef]
- Marinelli, M.; Verona-Rinati, G.; Falco, M.D.; Pimpinella, M.; De Stefano, S.; Ciccotelli, A.; Felici, G.; Marangoni, F. Synthetic single crystal diamond diode inclinical dosimetry of high dose per pulse electron beams for intraoperative radiation therapy (IORT). Phys. Med. 2014, 30, e68–e69. [Google Scholar] [CrossRef]
- Pimpinella, M.; Andreoli, S.; De Angelis, C.; Della Monaca, S.; D’Arienzo, M.; Menegotti, L. Output factor measurement in high dose-per-pulse IORT electron beams. Phys. Med. 2019, 61, 94–102. [Google Scholar] [CrossRef]
- Björk, P.; Knöös, T.; Nilsson, P. Comparative dosimetry of diode and diamond detectors in electron beams for intraoperative radiation therapy. Med. Phys. 2000, 27, 2580–2588. [Google Scholar] [CrossRef]
- Conte, G.; Girolami, M.; Salvatori, S.; Ralchenko, V. X-ray diamond detectors with energy resolution. Appl. Phys. Lett. 2007, 91, 183515. [Google Scholar] [CrossRef]
- Girolami, M.; Conte, G.; Salvatori, S.; Allegrini, P.; Bellucci, A.; Trucchi, D.M.; Ralchenko, V. Optimization of X-ray beam profilers based on CVD diamond detectors. J. Instrum. 2012, 7, C11005. [Google Scholar] [CrossRef]
- Pettinato, S.; Girolami, M.; Olivieri, R.; Stravato, A.; Caruso, C.; Salvatori, S. A diamond-based dose-per-pulse x-ray detector for radiation therapy. Materials 2021, 14, 5203. [Google Scholar] [CrossRef]
- Mazzeo, G.; Salvatori, S.; Conte, G.; Ralchenko, V.; Konov, V. Electronic performance of 2D-UV detectors. Diamond Relat. Mater. 2007, 16, 1053–1057. [Google Scholar] [CrossRef]
- Conte, G.; Giovine, E.; Girolami, M.; Salvatori, S.; Bolshakov, A.; Ralchenko, V. Polycrystalline diamond UV-triggered MESFET receivers. Nanotechnology 2012, 23, 075202. [Google Scholar] [CrossRef]
- Komlenok, M.; Bolshakov, A.; Ralchenko, V.; Konov, V.; Conte, G.; Girolami, M.; Oliva, P.; Salvatori, S. Diamond detectors with laser induced surface graphite electrodes. Nucl. Instrum. Meth. Phys. Res. A 2016, 837, 136–142. [Google Scholar] [CrossRef]
- Girolami, M.; Conte, G.; Trucchi, D.M.; Bellucci, A.; Oliva, P.; Kononenko, T.; Khomich, A.; Bolshakov, A.; Ralchenko, V.; Konov, V.; et al. Investigation with β-particles and protons of buried graphite pillars in single-crystal CVD diamond. Diamond Relat. Mater. 2018, 84, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pacilli, M.; Allegrini, P.; Girolami, M.; Conte, G.; Spiriti, E.; Ralchenko, V.G.; Komlenok, M.S.; Khomic, A.A.; Konov, V.I. Polycrystalline CVD diamond pixel array detector for nuclear particles monitoring. J. Instrum. 2013, 8, C02043. [Google Scholar] [CrossRef]
- Tardocchi, M.; Rebai, M.; Rigamonti, D.; Tinguely, R.; Caruggi, F.; Croci, G.; Molin, A.D.; Ghani, Z.; Giacomelli, L.; Girolami, M.; et al. A high-resolution neutron spectroscopic camera for the SPARC tokamak based on the Jet European Torus deuterium-tritium experience. Rev. Sci. Instrum. 2022, 93, 113512. [Google Scholar] [CrossRef]
- Angelone, M.; Verona, C. Properties of Diamond-Based Neutron Detectors Operated in Harsh Environments. J. Nucl. Eng. 2021, 2, 32. [Google Scholar] [CrossRef]
- Girolami, M.; Bellucci, A.; Calvani, P.; Cazzaniga, C.; Rebai, M.; Rigamonti, D.; Tardocchi, M.; Pillon, M.; Trucchi, D.M. Mosaic diamond detectors for fast neutrons and large ionizing radiation fields. Phys. Status Solidi A 2015, 212, 2424–2430. [Google Scholar] [CrossRef]
- Guerrero, M.J.; Tromson, D.; Rebisz, M.; Mer, C.; Bazin, B.; Bergonzo, P. Requirements for synthetic diamond devices for radiotherapy dosimetry applications. Diamond Relat. Mater. 2004, 13, 2046–2051. [Google Scholar] [CrossRef]
- Pettinato, S.; Girolami, M.; Olivieri, R.; Stravato, A.; Caruso, C.; Salvatori, S. Time-resolved dosimetry of pulsed photon beams for radiotherapy based on diamond detector. IEEE Sens. J. 2022, 22, 12348–12356. [Google Scholar] [CrossRef]
- Knoll, G.F. Radiation Detection and Measurement, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 167–169. [Google Scholar]
- Thompson, M.; Ellison, S.L.R.; Wood, R. Harmonized guidelines for single-laboratory validation of methods of analysis. Pure Appl. Chem. 2002, 74, 835–855. [Google Scholar] [CrossRef]
- Li, Y.; Chen, H.; Hao, Z.; Li, Z.; Wu, X.; Li, X.; Zhang, J. Direct X-ray Detectors Based on PDMS Films With Low Detection Limit and High Flexibility. IEEE Electron Device Lett. 2022, 43, 1997–2000. [Google Scholar] [CrossRef]
- Jiang, J.; Xiong, M.; Fan, K.; Bao, C.; Xin, D.; Pan, Z.; Fei, L.; Huang, H.; Zhou, L.; Yao, K.; et al. Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring. Nat. Photon. 2022, 16, 575–581. [Google Scholar] [CrossRef]
- Pettinato, S.; Orsini, A.; Rossi, M.C.; Tagnani, D.; Girolami, M.; Salvatori, S. A compact gated integrator for conditioning pulsed analog signals. In Applications in Electronics Pervading Industry, Environment and Society; Saponara, S., De Gloria, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 33–39. [Google Scholar]
- Pettinato, S.; Orsini, A.; Girolami, M.; Trucchi, D.M.; Rossi, M.C.; Salvatori, S. A high-precision gated integrator for repetitive pulsed signals acquisition. Electronics 2019, 8, 1231. [Google Scholar] [CrossRef] [Green Version]
- Pettinato, S.; Girolami, M.; Rossi, M.C.; Salvatori, S. Accurate Signal Conditioning for Pulsed-Current Synchronous Measurements. Sensors 2022, 22, 5360. [Google Scholar] [CrossRef]
- Hubbell, J.H.; Seltzer, S.M. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest; NISTIR 5632; National Institute of Standards and Technologies (NIST): Gaithersburg, MD, USA, 1995; p. 195. [CrossRef]
- Ravi, A.; Nisce, L.Z.; Nori, D. Total skin electron beam therapy in the management of cutaneous malignancies. Clin. Dermatol. 2001, 19, 354–356. [Google Scholar] [CrossRef]
- Strydom, W.; Parker, W.; Olivares, M.M. Electron beams: Physical and clinical aspects. In Radiation Oncology Physics: A Handbook for Teachers and Students; International Atomic Energy Agency (IAEA): Wien, Austria, 2005; pp. 273–285. Available online: https://www-pub.iaea.org/mtcd/publications/pdf/pub1196_web.pdf (accessed on 8 January 2023).
- Ravichandran, R.; Binukumar, J.P.; Al Amri, I.; Davis, C.A. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams. J. Appl. Clin. Med. Phys. 2016, 17, 291–303. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pettinato, S.; Girolami, M.; Stravato, A.; Serpente, V.; Musio, D.; Rossi, M.C.; Trucchi, D.M.; Olivieri, R.; Salvatori, S. A Highly Versatile X-ray and Electron Beam Diamond Dosimeter for Radiation Therapy and Protection. Materials 2023, 16, 824. https://doi.org/10.3390/ma16020824
Pettinato S, Girolami M, Stravato A, Serpente V, Musio D, Rossi MC, Trucchi DM, Olivieri R, Salvatori S. A Highly Versatile X-ray and Electron Beam Diamond Dosimeter for Radiation Therapy and Protection. Materials. 2023; 16(2):824. https://doi.org/10.3390/ma16020824
Chicago/Turabian StylePettinato, Sara, Marco Girolami, Antonella Stravato, Valerio Serpente, Daniela Musio, Maria C. Rossi, Daniele M. Trucchi, Riccardo Olivieri, and Stefano Salvatori. 2023. "A Highly Versatile X-ray and Electron Beam Diamond Dosimeter for Radiation Therapy and Protection" Materials 16, no. 2: 824. https://doi.org/10.3390/ma16020824
APA StylePettinato, S., Girolami, M., Stravato, A., Serpente, V., Musio, D., Rossi, M. C., Trucchi, D. M., Olivieri, R., & Salvatori, S. (2023). A Highly Versatile X-ray and Electron Beam Diamond Dosimeter for Radiation Therapy and Protection. Materials, 16(2), 824. https://doi.org/10.3390/ma16020824