Zinc-Intercalated Halloysite Nanotubes as Potential Nanocomposite Fertilizers with Targeted Delivery of Micronutrients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Minerals and Materials
2.2. Chemical and Mechanochemical Preparation of Nanocomposites
2.3. Characterization of the Nanocomposites
2.4. Experimental Methods
3. Results
3.1. Nanocomposite Morphology
3.2. Structural Characteristics of Nanocomposites
3.3. Chemical Composition of Nanocomposites
3.4. Interaction of Nanotubes with the Plant Surface
4. Discussion
5. Conclusions
- (1)
- The study confirms the potential for zinc intercalation into the meso-microporous spaces of halloysite. It was observed that the minimum concentration of zinc sulfate solution required for this is 20%.
- (2)
- The interaction of halloysite with zinc sulfate is contingent on the concentration of the sulfate solution, affecting both the location and shape of the incorporated zinc within the halloysite structure. Complete absorption of zinc within the nanotube structure is observed upon activation of the halloysite using a 20% zinc sulfate solution. Conversely, when a more concentrated solution (40% zinc sulfate) is used, zinc adsorption in sulfate on the tube surface is observed. This phenomenon suggests a high sulfate concentration, leading to an optimal solution concentration between 0 and 40%.
- (3)
- The intercalation of zinc into the macro-, meso-, and micropores of the halloysite is evident in the subsequent enlargement of the average nanotube diameter and interlayer distance. An increase in the zinc concentration within the solution results in a more substantial increase in the nanotube diameter, thereby signifying a direct correlation between the concentration of infiltrated zinc in the halloysite structure and that in the solution. Furthermore, the successful intercalation is corroborated by PEM data. In the activated nanotubes, the central part of the crystal is opaque, unlike the original halloysite, providing evidence that the tubes are filled with zinc.
- (4)
- Halloysite nanotubes possess a distinctive morphology that enables them to adhere firmly to plant tissues when sprayed on them. These needle-like tubes penetrate and remain on the surface of the leaves, providing a gradual release of zinc and nutrients for the plant. A significant benefit of this technique is that halloysite nanotubes are not washed away by rainwater, unlike fertilizers in the soil.
- (5)
- The surface spraying of halloysite nanotubes permits precise delivery of zinc to plants, avoiding contaminating soil and groundwater, thus rendering the proposed fertilizer environmentally friendly. This technique can play a significant role in sustainable agriculture and environmental preservation.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zahidah, K.A.; Kakooei, S.; Ismail, M.C.; Bothi Raja, P. Halloysite Nanotubes as Nanocontainer for Smart Coating Application: A Review. Prog. Org. Coat. 2017, 111, 175–185. [Google Scholar] [CrossRef]
- Joussein, E.; Petit, S.; Churchman, J.; Theng, B.; Righi, D.; Delvaux, B. Halloysite Clay Minerals—A Review. Clay Miner. 2005, 40, 383–426. [Google Scholar] [CrossRef]
- Kerr, P.F. Formation and Occurrence of Clay Minerals. Clays Clay Miner. 1952, 1, 19–32. [Google Scholar] [CrossRef]
- Zhang, B.; Yu, T.; Guo, H.; Chen, J.; Liu, Y.; Yuan, P. Effect of the SiO2/Al2O3 Molar Ratio on the Microstructure and Properties of Clay-Based Geopolymers: A Comparative Study of Kaolinite-Based and Halloysite-Based Geopolymers. Clays Clay Miner. 2022, 70, 882–902. [Google Scholar] [CrossRef]
- Heidari Pebdani, M. Molecular Insight into Structural and Mechanical Properties of Halloysite Structure. Comput. Mater. Sci. 2023, 218, 111948. [Google Scholar] [CrossRef]
- Theng, B.K.G. Comparison of Intercalation Methods for Differentiating Halloysite from Kaolinite. Clays Clay Miner. 1984, 32, 249–258. [Google Scholar] [CrossRef]
- Fukushima, K.; Kohyama, N.; Fukami, A. In-Situ Observation of Clay Minerals Hydrated and Intercalated with Liquid Chemicals Using Film-Sealed Environmental Cell. Proc. Annu. Meet. Electron Microsc. Soc. Am. 1980, 38, 208–209. [Google Scholar] [CrossRef]
- Merino, E. Aqueous-Chemical Control of the Tetrahedral-Aluminum Content of Quartz, Halloysite, and Other Low-Temperature Silicates. Clays Clay Miner. 1989, 37, 135–142. [Google Scholar] [CrossRef]
- Wada, K. Synthesis and Characterization of a Hollow Spherical Form of Monolayer Aluminosilicate. Clays Clay Miner. 1988, 36, 11–18. [Google Scholar] [CrossRef]
- Takahashi, T.; Dahlgren, R.A.; Theng, B.K.G.; Whitton, J.S.; Soma, M. Potassium-Selective, Halloysite-Rich Soils Formed in Volcanic Materials from Northern California. Soil Sci. Soc. Am. J. 2001, 65, 516–526. [Google Scholar] [CrossRef]
- Perruchot, A.; Dupuis, C.; Brouard, E.; Nicaise, D.; Ertus, R. L’halloysite Karstique: Comparaison Des Gisements Types de Wallonie (Belgique) et Du Perigord (France). Clay Miner. 1997, 32, 271–287. [Google Scholar] [CrossRef]
- Ece, O.I.; Nakagawa, Z.-E.; Schroeder, P. Alteration of Volcanic Rocks and Genesis of Kaolin Deposits in the Sile Region, Northern Istanbul, Turkey. I: Clay Mineralogy. Clays Clay Miner. 2003, 51, 675–688. [Google Scholar] [CrossRef]
- Parfitt, R.L.; Russell, M.; Orbell, G.E. Weathering Sequence of Soils from Volcanic Ash Involving Allophane and Halloysite, New Zealand. Geoderma 1983, 29, 41–57. [Google Scholar] [CrossRef]
- Bac, B.; Dung, N.; Khang, L.; Hung, K.; Lam, N.; An, D.; Son, P.; Anh, T.; Chuong, D.; Tinh, B. Distribution and Characteristics of Nanotubular Halloysites in the Thach Khoan Area, Phu Tho, Vietnam. Minerals 2018, 8, 290. [Google Scholar] [CrossRef]
- Wilson, I.; Keeling, J. Global Occurrence, Geology and Characteristics of Tubular Halloysite Deposits. Clay Miner. 2016, 51, 309–324. [Google Scholar] [CrossRef]
- Mobaraki, M.; Karnik, S.; Li, Y.; Mills, D.K. Therapeutic Applications of Halloysite. Appl. Sci. 2021, 12, 87. [Google Scholar] [CrossRef]
- Zsirka, B.; Vágvölgyi, V.; Horváth, E.; Juzsakova, T.; Fónagy, O.; Szabó-Bárdos, E.; Kristóf, J. Halloysite-Zinc Oxide Nanocomposites as Potential Photocatalysts. Minerals 2022, 12, 476. [Google Scholar] [CrossRef]
- Cheng, C.; Song, W.; Zhao, Q.; Zhang, H. Halloysite Nanotubes in Polymer Science: Purification, Characterization, Modification and Applications. Nanotechnol. Rev. 2020, 9, 323–344. [Google Scholar] [CrossRef]
- Zhang, Y.; Ouyang, J.; Yang, H. Metal Oxide Nanoparticles Deposited onto Carbon-Coated Halloysite Nanotubes. Appl. Clay Sci. 2014, 95, 252–259. [Google Scholar] [CrossRef]
- Lampropoulou, P.; Papoulis, D. Halloysite in Different Ceramic Products: A Review. Materials 2021, 14, 5501. [Google Scholar] [CrossRef]
- Prinz Setter, O.; Segal, E. Halloysite Nanotubes—The Nano-Bio Interface. Nanoscale 2020, 12, 23444–23460. [Google Scholar] [CrossRef] [PubMed]
- Lapčík, L.; Sepetcioğlu, H.; Murtaja, Y.; Lapčíková, B.; Vašina, M.; Ovsík, M.; Staněk, M.; Gautam, S. Study of Mechanical Properties of Epoxy/Graphene and Epoxy/Halloysite Nanocomposites. Nanotechnol. Rev. 2023, 12, 20220520. [Google Scholar] [CrossRef]
- Finnerty, J.; Rowe, S.; Howard, T.; Connolly, S.; Doran, C.; Devine, D.M.; Gately, N.M.; Chyzna, V.; Portela, A.; Bezerra, G.S.N.; et al. Effect of Mechanical Recycling on the Mechanical Properties of PLA-Based Natural Fiber-Reinforced Composites. J. Compos. Sci. 2023, 7, 141. [Google Scholar] [CrossRef]
- Cavallaro, G.; Milioto, S.; Konnova, S.; Fakhrullina, G.; Akhatova, F.; Lazzara, G.; Fakhrullin, R.; Lvov, Y. Halloysite/Keratin Nanocomposite for Human Hair Photoprotection Coating. ACS Appl. Mater. Interfaces 2020, 12, 24348–24362. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, G.; Milioto, S.; Lazzara, G. Halloysite Nanotubes: Interfacial Properties and Applications in Cultural Heritage. Langmuir 2020, 36, 3677–3689. [Google Scholar] [CrossRef]
- Chen, Y.; Geever, L.M.; Killion, J.A.; Lyons, J.G.; Higginbotham, C.L.; Devine, D.M. Halloysite Nanotube Reinforced Polylactic Acid Composite. Polym. Compos. 2017, 38, 2166–2173. [Google Scholar] [CrossRef]
- Jafari, S.M. An Introduction to Nanoencapsulation Techniques for the Food Bioactive Ingredients. In Nanoencapsulation of Food Bioactive Ingredients; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–62. [Google Scholar]
- Xie, M.; Huang, K.; Yang, F.; Wang, R.; Han, L.; Yu, H.; Ye, Z.; Wu, F. Chitosan Nanocomposite Films Based on Halloysite Nanotubes Modification for Potential Biomedical Applications. Int. J. Biol. Macromol. 2020, 151, 1116–1125. [Google Scholar] [CrossRef]
- Wei, Y.; Liang, X.; Wu, H.; Cen, J.; Ji, Y. Efficient Phosphate Removal by Dendrite-like Halloysite-Zinc Oxide Nanocomposites Prepared via Noncovalent Hybridization. Appl. Clay Sci. 2021, 213, 106232. [Google Scholar] [CrossRef]
- De Silva, R.T.; Pasbakhsh, P.; Lee, S.M.; Kit, A.Y. ZnO Deposited/Encapsulated Halloysite–Poly (Lactic Acid) (PLA) Nanocomposites for High Performance Packaging Films with Improved Mechanical and Antimicrobial Properties. Appl. Clay Sci. 2015, 111, 10–20. [Google Scholar] [CrossRef]
- Price, R.R.; Gaber, B.P.; Lvov, Y. In-Vitro Release Characteristics of Tetracycline HC1, Khellin and Nicotinamide Adenine Dineculeotide from Halloysite; a Cylindrical Mineral. J. Microencapsul. 2001, 18, 713–722. [Google Scholar] [CrossRef]
- Shchukin, D.G.; Sukhorukov, G.B.; Price, R.R.; Lvov, Y.M. Halloysite Nanotubes as Biomimetic Nanoreactors. Small 2005, 1, 510–513. [Google Scholar] [CrossRef] [PubMed]
- Sothornvit, R. Nanostructured Materials for Food Packaging Systems: New Functional Properties. Curr. Opin. Food Sci. 2019, 25, 82–87. [Google Scholar] [CrossRef]
- Saadat, S.; Pandey, G.; Tharmavaram, M.; Braganza, V.; Rawtani, D. Nano-Interfacial Decoration of Halloysite Nanotubes for the Development of Antimicrobial Nanocomposites. Adv. Colloid Interface Sci. 2020, 275, 102063. [Google Scholar] [CrossRef]
- Omarova, M.; Swientoniewski, L.T.; Tsengam, I.K.M.; Panchal, A.; Yu, T.; Blake, D.A.; Lvov, Y.M.; Zhang, D.; John, V. Engineered Clays as Sustainable Oil Dispersants in the Presence of Model Hydrocarbon Degrading Bacteria: The Role of Bacterial Sequestration and Biofilm Formation. ACS Sustain. Chem. Eng. 2018, 6, 14143–14153. [Google Scholar] [CrossRef]
- Yu, T.; Swientoniewski, L.T.; Omarova, M.; Li, M.C.; Negulescu, I.I.; Jiang, N.; Darvish, O.A.; Panchal, A.; Blake, D.A.; Wu, Q.; et al. Investigation of Amphiphilic Polypeptoid-Functionalized Halloysite Nanotubes as Emulsion Stabilizer for Oil Spill Remediation. ACS Appl. Mater. Interfaces 2019, 11, 27944–27953. [Google Scholar] [CrossRef]
- Wang, C.; He, Z.; Liu, Y.; Zhou, C.; Jiao, J.; Li, P.; Sun, D.; Lin, L.; Yang, Z. Chitosan-Modified Halloysite Nanotubes as a Controlled-Release Nanocarrier for Nitrogen Delivery. Appl. Clay Sci. 2020, 198, 105802. [Google Scholar] [CrossRef]
- Jock Churchman, G.; Pasbakhsh, P.; Hillier, S. The Rise and Rise of Halloysite. Clay Miner. 2016, 51, 303–308. [Google Scholar] [CrossRef]
- Zhang, G.; Zhou, L.; Cai, D.; Wu, Z. Anion-Responsive Carbon Nanosystem for Controlling Selenium Fertilizer Release and Improving Selenium Utilization Efficiency in Vegetables. Carbon N. Y. 2018, 129, 711–719. [Google Scholar] [CrossRef]
- Boro, U.; Moholkar, V.S. Antimicrobial Bionanocomposites of Poly(Lactic Acid)/ZnO Deposited Halloysite Nanotubes for Potential Food Packaging Applications. Mater. Today Commun. 2022, 33, 104787. [Google Scholar] [CrossRef]
- Broadley, M.R.; White, P.J.; Hammond, J.P.; Zelko, I.; Lux, A. Zinc in Plants. New Phytol. 2007, 173, 677–702. [Google Scholar] [CrossRef]
- Sheoran, P.; Grewal, S.; Kumari, S.; Goel, S. Enhancement of Growth and Yield, Leaching Reduction in Triticum Aestivum Using Biogenic Synthesized Zinc Oxide Nanofertilizer. Biocatal. Agric. Biotechnol. 2021, 32, 101938. [Google Scholar] [CrossRef]
- Alloway, B.J. Soil Factors Associated with Zinc Deficiency in Crops and Humans. Environ. Geochem. Health 2009, 31, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, B.; Khanif, Y.M.; Saleem, M. Role of Zinc in Plant Nutrition—A Review. Am. J. Exp. Agric. 2013, 3, 374–391. [Google Scholar] [CrossRef]
- Lakshmi, P.V.; Singh, S.K.; Pramanick, B.; Kumar, M.; Laik, R.; Kumari, A.; Shukla, A.K.; Abdel Latef, A.A.H.; Ali, O.M.; Hossain, A. Long-Term Zinc Fertilization in Calcareous Soils Improves Wheat (Triticum aestivum L.) Productivity and Soil Zinc Status in the Rice–Wheat Cropping System. Agronomy 2021, 11, 1306. [Google Scholar] [CrossRef]
- Brennan, R.F.; Bolland, M.D.A. Residual Values of Soil-Applied Zinc Fertiliser for Early Vegetative Growth of Six Crop Species. Aust. J. Exp. Agric. 2006, 46, 1341. [Google Scholar] [CrossRef]
- Hussain, S.; Maqsood, M.A.; Rengel, Z.; Aziz, T. Biofortification and Estimated Human Bioavailability of Zinc in Wheat Grains as Influenced by Methods of Zinc Application. Plant Soil 2012, 361, 279–290. [Google Scholar] [CrossRef]
- Krysanov, E.Y.; Pavlov, D.S.; Demidova, T.B.; Dgebuadze, Y.Y. Effect of Nanoparticles on Aquatic Organisms. Biol. Bull. 2010, 37, 406–412. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Bindraban, P.S. Nanofertilizers: New Products for the Industry? J. Agric. Food Chem. 2018, 66, 6462–6473. [Google Scholar] [CrossRef]
- Liu, R.; Lal, R. Potentials of Engineered Nanoparticles as Fertilizers for Increasing Agronomic Productions. Sci. Total Environ. 2015, 514, 131–139. [Google Scholar] [CrossRef]
- Kon’kova, T.V.; Rysev, A.P. Long-Term Zinc-Containing Microfertilizer Based on Bentonite Clay: Manufacture and Properties. Russ. J. Appl. Chem. 2022, 95, 1380–1386. [Google Scholar] [CrossRef]
- Asadi, N.; Naderi, R.; Mahdavian, M. Doping of Zinc Cations in Chemically Modified Halloysite Nanotubes to Improve Protection Function of an Epoxy Ester Coating. Corros. Sci. 2019, 151, 69–80. [Google Scholar] [CrossRef]
- Fatima Gillani, Q.; Ahmad, F.; Ibrahim Abdul Mutlib, M.; Sri Melor, P.; Arogundade, A. Synergistic effects of zinc borate and halloysite nanotubes (HNTS) on char morphology and gases emission of epoxy based intumescent fire retardant systems. ARPN J. Eng. Appl. Sci. 2016, 11, 12053–12057. [Google Scholar]
- Shi, X.; Nguyen, T.A.; Suo, Z.; Liu, Y.; Avci, R. Effect of Nanoparticles on the Anticorrosion and Mechanical Properties of Epoxy Coating. Surf. Coat. Technol. 2009, 204, 237–245. [Google Scholar] [CrossRef]
- Su, Z.; Zhang, H.; Gao, Y.; Huo, L.; Wu, Y.; Ba, X. Coumarin-Anchored Halloysite Nanotubes for Highly Selective Detection and Removal of Zn(II). Chem. Eng. J. 2020, 393, 124695. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, Z.; Chen, L. Removal of Zn(II) from Aqueous Solution by Natural Halloysite Nanotubes. J. Radioanal. Nucl. Chem. 2012, 292, 435–443. [Google Scholar] [CrossRef]
- Makaremi, M.; Pasbakhsh, P.; Cavallaro, G.; Lazzara, G.; Aw, Y.K.; Lee, S.M.; Milioto, S. Effect of Morphology and Size of Halloysite Nanotubes on Functional Pectin Bionanocomposites for Food Packaging Applications. ACS Appl. Mater. Interfaces 2017, 9, 17476–17488. [Google Scholar] [CrossRef]
- Bertolino, V.; Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F. Halloysite Nanotubes Sandwiched between Chitosan Layers: Novel Bionanocomposites with Multilayer Structures. New J. Chem. 2018, 42, 8384–8390. [Google Scholar] [CrossRef]
- Liu, M.; Jia, Z.; Jia, D.; Zhou, C. Recent Advance in Research on Halloysite Nanotubes-Polymer Nanocomposite. Prog. Polym. Sci. 2014, 39, 1498–1525. [Google Scholar] [CrossRef]
- Cheng, H.; Frost, R.L.; Yang, J.; Liu, Q.; He, J. Infrared and Infrared Emission Spectroscopic Study of Typical Chinese Kaolinite and Halloysite. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010, 77, 1014–1020. [Google Scholar] [CrossRef]
- Szczepanik, B.; Słomkiewicz, P.; Garnuszek, M.; Czech, K.; Banaś, D.; Kubala-Kukuś, A.; Stabrawa, I. The Effect of Chemical Modification on the Physico-Chemical Characteristics of Halloysite: FTIR, XRF, and XRD Studies. J. Mol. Struct. 2015, 1084, 16–22. [Google Scholar] [CrossRef]
- Theo Kloprogge, J.; Frost, R.L. Raman Microprobe Spectroscopy of Hydrated Halloysite from a Neogene Cryptokarst from Southern Belgium. J. Raman Spectrosc. 1999, 30, 1079–1085. [Google Scholar] [CrossRef]
- Frost, R.L. Intercalation of Halloysite: A Raman Spectroscopic Study. Clays Clay Miner. 1997, 45, 551–563. [Google Scholar] [CrossRef]
- Joo, Y.; Joo, J.H.; Jeon, Y.; Lee, S.U.; Sohn, D. Opening and Blocking the Inner-Pores of Halloysite. Chem. Commun. 2013, 49, 4519–4521. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, M.; Azadmanesh, K.; Shokrgozar, M.A.; Journeay, W.S.; Laurent, S. Effect of Nanoparticles on the Cell Life Cycle. Chem. Rev. 2011, 111, 3407–3432. [Google Scholar] [CrossRef]
- Massaro, M.; Noto, R.; Riela, S. Past, Present and Future Perspectives on Halloysite Clay Minerals. Molecules 2020, 25, 4863. [Google Scholar] [CrossRef]
- Lisowska, A.; Filipek-Mazur, B.; Sołtys, J.; Niemiec, M.; Gorczyca, O.; Bar-Michalczyk, D.; Komorowska, M.; Gródek-Szostak, Z.; Szeląg-Sikora, A.; Sikora, J.; et al. Preparation, Characterization of Granulated Sulfur Fertilizers and Their Effects on a Sandy Soils. Materials 2022, 15, 612. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maximov, P.; Dasi, E.; Kalinina, N.; Ruban, A.; Pokidko, B.; Rudmin, M. Zinc-Intercalated Halloysite Nanotubes as Potential Nanocomposite Fertilizers with Targeted Delivery of Micronutrients. Materials 2023, 16, 6729. https://doi.org/10.3390/ma16206729
Maximov P, Dasi E, Kalinina N, Ruban A, Pokidko B, Rudmin M. Zinc-Intercalated Halloysite Nanotubes as Potential Nanocomposite Fertilizers with Targeted Delivery of Micronutrients. Materials. 2023; 16(20):6729. https://doi.org/10.3390/ma16206729
Chicago/Turabian StyleMaximov, Prokopiy, Evan Dasi, Natalia Kalinina, Alexey Ruban, Boris Pokidko, and Maxim Rudmin. 2023. "Zinc-Intercalated Halloysite Nanotubes as Potential Nanocomposite Fertilizers with Targeted Delivery of Micronutrients" Materials 16, no. 20: 6729. https://doi.org/10.3390/ma16206729
APA StyleMaximov, P., Dasi, E., Kalinina, N., Ruban, A., Pokidko, B., & Rudmin, M. (2023). Zinc-Intercalated Halloysite Nanotubes as Potential Nanocomposite Fertilizers with Targeted Delivery of Micronutrients. Materials, 16(20), 6729. https://doi.org/10.3390/ma16206729