Investigating the Phase Transition Kinetics of 1-Octadecanol/Sorbitol Derivative/Expanded Graphite Composite Phase Change Material with Isoconversional and Multivariate Non-Linear Regression Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation
2.3. Characterization
2.4. Kinetic Methods
3. Results and Discussion
3.1. Thermal Analysis
3.2. Non-Isothermal Kinetic Analysis
3.2.1. Isoconversional Method
3.2.2. Multivariate Non-Linear Regression Method
3.3. Characterization and Discussion
3.4. Kinetic Predictions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Waterson, M. The characteristics of electricity storage, renewables and markets. Energy Policy 2017, 104, 466–473. [Google Scholar] [CrossRef]
- Bian, Q. The Nature of Climate Change-equivalent Climate Change Model’s Application in Decoding the Root Cause of Global Warming. Int. J. Environ. Clim. Change 2019, 9, 801–822. [Google Scholar] [CrossRef]
- Liu, L.; Niu, J.; Wu, J.-Y. Preparation of Stable Phase Change Material Emulsions for Thermal Energy Storage and Thermal Management Applications: A Review. Materials 2021, 15, 121. [Google Scholar] [CrossRef] [PubMed]
- Nazir, H.; Batool, M.; Bolivar Osorio, F.J.; Isaza-Ruiz, M.; Xu, X.; Vignarooban, K.; Phelan, P.; Inamuddin; Kannan, A.M. Recent developments in phase change materials for energy storage applications: A review. Int. J. Heat Mass Transf. 2019, 129, 491–523. [Google Scholar] [CrossRef]
- Waqas, A.; Ji, J.; Xu, L.; Ali, M.; Zeashan; Alvi, J. Thermal and electrical management of photovoltaic panels using phase change materials—A review. Renew. Sustain. Energy Rev. 2018, 92, 254–271. [Google Scholar] [CrossRef]
- Aftab, W.; Usman, A.; Shi, J.; Yuan, K.; Qin, M.; Zou, R. Phase change material-integrated latent heat storage systems for sustainable energy solutions. Energy Environ. Sci. 2021, 14, 4268–4291. [Google Scholar] [CrossRef]
- Aziz, S.; Talha, T.; Mazhar, A.R.; Ali, J.; Jung, D.-W. A Review of Solar-Coupled Phase Change Materials in Buildings. Materials 2023, 16, 5979. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Liu, J.; Niu, X. Recent advancements on thermal management and evaluation for data centers. Appl. Therm. Eng. 2018, 142, 215–231. [Google Scholar] [CrossRef]
- Pielichowska, K.; Pielichowski, K. Phase change materials for thermal energy storage. Prog. Mater. Sci. 2014, 65, 67–123. [Google Scholar] [CrossRef]
- Zhang, H.; Baeyens, J.; Cáceres, G.; Degrève, J.; Lv, Y. Thermal energy storage: Recent developments and practical aspects. Prog. Energy Combust. Sci. 2016, 53, 1–40. [Google Scholar] [CrossRef]
- Kahwaji, S.; White, M.A. Organic Phase Change Materials for Thermal Energy Storage: Influence of Molecular Structure on Properties. Molecules 2021, 26, 6635. [Google Scholar] [CrossRef] [PubMed]
- Pielichowska, K.; Paprota, N.; Pielichowski, K. Fire Retardant Phase Change Materials—Recent Developments and Future Perspectives. Materials 2023, 16, 4391. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, X.; Hua, W. Review of preparation technologies of organic composite phase change materials in energy storage. J. Mol. Liq. 2021, 336, 115923. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, Y.C.; Yang, L.Y.; Feng, C.P.; Bai, L.; Yang, M.B.; Yang, W. Exploring Next-Generation Functional Organic Phase Change Composites. Adv. Funct. Mater. 2022, 32, 2200792. [Google Scholar] [CrossRef]
- Xue, F.; Qi, X.D.; Huang, T.; Tang, C.Y.; Zhang, N.; Wang, Y. Preparation and application of three-dimensional filler network towards organic phase change materials with high performance and multi-functions. Chem. Eng. J. 2021, 419, 129620. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, N.; Li, T.; Cao, X.; Long, W. Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: A comparative study. Energy 2016, 97, 488–497. [Google Scholar] [CrossRef]
- Xu, B.; Wang, B.; Zhang, C.; Zhou, J. Synthesis and light-heat conversion performance of hybrid particles decorated MWCNTs/paraffin phase change materials. Thermochim. Acta 2017, 652, 77–84. [Google Scholar] [CrossRef]
- Fan, L.-W.; Fang, X.; Wang, X.; Zeng, Y.; Xiao, Y.-Q.; Yu, Z.-T.; Xu, X.; Hu, Y.-C.; Cen, K.-F. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl. Energy 2013, 110, 163–172. [Google Scholar] [CrossRef]
- Yadav, M.; Pasarkar, N.; Naikwadi, A.; Mahanwar, P. A review on microencapsulation, thermal energy storage applications, thermal conductivity and modification of polymeric phase change material for thermal energy storage applications. Polym. Bull. 2022, 80, 5897–5927. [Google Scholar] [CrossRef]
- Chang, Z.J.; Wang, K.; Wu, X.H.; Lei, G.; Wang, Q.W.; Liu, H.; Wang, Y.L.; Zhang, Q. Review on the preparation and performance of paraffin-based phase change microcapsules for heat storage. J. Energy Storage 2022, 46, 103840. [Google Scholar] [CrossRef]
- Zhang, S.; Feng, D.; Shi, L.; Wang, L.; Jin, Y.; Tian, L.; Li, Z.; Wang, G.; Zhao, L.; Yan, Y. A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage. Renew. Sustain. Energy Rev. 2021, 135, 110127. [Google Scholar] [CrossRef]
- Serrano, A.; Dauvergne, J.-L.; Doppiu, S.; Palomo Del Barrio, E. Neopentyl Glycol as Active Supporting Media in Shape-Stabilized PCMs. Materials 2019, 12, 3169. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Luo, S.; Ji, W.; Li, Y.; Li, L.; Cheng, X. Phase-changing hydrogels incorporated with copper sulfide-carbon nanotubes for smart thermal management and solar energy storage. J. Energy Storage 2022, 50, 104653. [Google Scholar] [CrossRef]
- Kook, J.-W.; Hwang, K.; Lee, J.-Y. Effect of the PSSMA Content on the Heat Transfer Performances of Polyurea Nano-Encapsulated Phase Change Materials. Materials 2021, 14, 3157. [Google Scholar] [CrossRef]
- Yuan, K.; Liu, J.; Fang, X.; Zhang, Z. Novel facile self-assembly approach to construct graphene oxide-decorated phase-change microcapsules with enhanced photo-to-thermal conversion performance. J. Mater. Chem. A 2018, 6, 4535–4543. [Google Scholar] [CrossRef]
- Liang, K.; Shi, L.; Zhang, J.; Cheng, J.; Wang, X. Fabrication of shape-stable composite phase change materials based on lauric acid and graphene/graphene oxide complex aerogels for enhancement of thermal energy storage and electrical conduction. Thermochim. Acta 2018, 664, 1–15. [Google Scholar] [CrossRef]
- Song, S.; Yang, Z.; Li, J.; Wang, C.; Zhao, S. Analysis and Optimization of Thermophysical Properties and Phase Change Behavior of Expanded Vermiculite-Based Organic Composite Phase Change Materials. Energy Fuels 2021, 35, 2727–2741. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Sbirrazzuoli, N. Nonisothermal Crystallization Kinetics by DSC: Practical Overview. Processes 2023, 11, 1438. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Favergeon, L.; Koga, N.; Moukhina, E.; Pérez-Maqueda, L.A.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim. Acta 2020, 689, 178597. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Chrissafis, K.; Di Lorenzo, M.L.; Koga, N.; Pijolat, M.; Roduit, B.; Sbirrazzuoli, N.; Suñol, J.J. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim. Acta 2014, 590, 1–23. [Google Scholar] [CrossRef]
- Koga, N.; Vyazovkin, S.; Burnham, A.K.; Favergeon, L.; Muravyev, N.V.; Pérez-Maqueda, L.A.; Saggese, C.; Sánchez-Jiménez, P.E. ICTAC Kinetics Committee recommendations for analysis of thermal decomposition kinetics. Thermochim. Acta 2023, 719, 178597. [Google Scholar] [CrossRef]
- Tarani, E.; Papageorgiou, G.Z.; Bikiaris, D.N.; Chrissafis, K. Kinetics of Crystallization and Thermal Degradation of an Isotactic Polypropylene Matrix Reinforced with Graphene/Glass-Fiber Filler. Molecules 2019, 24, 1984. [Google Scholar] [CrossRef] [PubMed]
- Vyazovkin, S.; Achilias, D.; Fernandez-Francos, X.; Galukhin, A.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for analysis of thermal polymerization kinetics. Thermochim. Acta 2022, 714, 179243. [Google Scholar] [CrossRef]
- Paran, S.M.R.; Naderi, G.; Movahedifar, E.; Jouyandeh, M.; Formela, K.; Colom, X.; Cañavate, J.; Saeb, M.R. Isothermal Vulcanization and Non-Isothermal Degradation Kinetics of XNBR/Epoxy/XNBR-g-Halloysite Nanotubes (HNT) Nanocomposites. Materials 2021, 14, 2872. [Google Scholar] [CrossRef]
- Kremer, I.; Tomić, T.; Katančić, Z.; Erceg, M.; Papuga, S.; Vuković, J.P.; Schneider, D.R. Catalytic pyrolysis of mechanically non-recyclable waste plastics mixture: Kinetics and pyrolysis in laboratory-scale reactor. J. Environ. Manag. 2021, 296, 113145. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mohanty, K. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour. Technol. 2018, 251, 63–74. [Google Scholar] [CrossRef]
- Pandele, C.J.; Musuc, A.M.; Oancea, D. Thermal decomposition of new aldehyde-2,4-dinitrophenylhydrazone: Kinetic studies and thermal hazard predictions. Thermochim. Acta 2020, 689, 178610. [Google Scholar] [CrossRef]
- Lizana, J.; Perejón, A.; Sanchez-Jimenez, P.E.; Perez-Maqueda, L.A. Advanced parametrisation of phase change materials through kinetic approach. J. Energy Storage 2021, 44, 103441. [Google Scholar] [CrossRef]
- Biswas, K.; Lu, J.; Soroushian, P.; Shrestha, S. Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard. Appl. Energy 2014, 131, 517–529. [Google Scholar] [CrossRef]
- Xu, J.; Cheng, X.; Li, Y.; Yu, G. Preparation and Properties of l-octadecanol/1,3:2,4-di-(3,4-dimethyl) Benzylidene Sorbitol/Expanded Graphite Form-stable Composite Phase Change Material. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2019, 34, 728–735. [Google Scholar] [CrossRef]
- Adams, D.J. Personal Perspective on Understanding Low Molecular Weight Gels. J. Am. Chem. Soc. 2022, 144, 11047–11053. [Google Scholar] [CrossRef] [PubMed]
- Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [Google Scholar] [CrossRef]
- Kissinger, H.E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Friedman, H.L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C Polym. Symp. 2007, 6, 183–195. [Google Scholar] [CrossRef]
- Ozawa, T. A New Method of Analyzing Thermogravimetric Data. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886. [Google Scholar] [CrossRef]
- Erceg, M.; Krešić, I.; Vrandečić, N.S.; Jakić, M. Different approaches to the kinetic analysis of thermal degradation of poly(ethylene oxide). J. Therm. Anal. Calorim. 2017, 131, 325–334. [Google Scholar] [CrossRef]
- Flammersheim, H.J.; Opfermann, J.R. Kinetic evaluation of DSC curves for reacting systems with variable stoichiometric compositions. Thermochim. Acta 2002, 388, 389–400. [Google Scholar] [CrossRef]
- Gandolfo, F.G.; Bot, A.; Floter, E. Phase diagram of mixtures of stearic acid and stearyl alcohol. Thermochim. Acta 2003, 404, 9–17. [Google Scholar] [CrossRef]
- Sbirrazzuoli, N.; Vincent, L.; Mija, A.; Guigo, N. Integral, differential and advanced isoconversional methods Complex mechanisms and isothermal predicted conversion-time curves. Chemometr. Intell. Lab. 2009, 96, 219–226. [Google Scholar] [CrossRef]
- Budrugeac, P.; Homentcovschi, D.; Segal, E. Critical considerations on the isoconversional methods—III. On the evaluation of the activation energy from non-isothermal data. J. Therm. Anal. Calorim. 2001, 66, 557–565. [Google Scholar] [CrossRef]
- Tarani, E.; Pušnik Črešnar, K.; Zemljič, L.F.; Chrissafis, K.; Papageorgiou, G.Z.; Lambropoulou, D.; Zamboulis, A.; Bikiaris, D.N.; Terzopoulou, Z. Cold Crystallization Kinetics and Thermal Degradation of PLA Composites with Metal Oxide Nanofillers. Appl. Sci. 2021, 11, 3004. [Google Scholar] [CrossRef]
- Pielichowska, K. Thermooxidative degradation of polyoxymethylene homo- and copolymer nanocomposites with hydroxyapatite: Kinetic and thermoanalytical study. Thermochim. Acta 2015, 600, 7–19. [Google Scholar] [CrossRef]
- Budrugeac, P. Phase transitions of a parchment manufactured from deer leather. J. Therm. Anal. Calorim. 2014, 120, 103–112. [Google Scholar] [CrossRef]
- Budrugeac, P.; Cucos, A. Application of Kissinger, isoconversional and multivariate non-linear regression methods for evaluation of the mechanism and kinetic parameters of phase transitions of type I collagen. Thermochim. Acta 2013, 565, 241–252. [Google Scholar] [CrossRef]
- Opfermann, J. Kinetic analysis using multivariate non-linear regression—I. Basic concepts. J. Therm. Anal. Calorim. 2000, 60, 641–658. [Google Scholar] [CrossRef]
- Iwasa, M.; Kakinoki, S.; Emoto, K.; Yoshida, H. Morphology and phase transitions of n-alkyl alcohol microcrystals. J. Therm. Anal. Calorim. 2015, 123, 1825–1831. [Google Scholar] [CrossRef]
- Huang, X.; Xia, W.; Zou, R. Nanoconfinement of phase change materials within carbon aerogels: Phase transition behaviours and photo-to-thermal energy storage. J. Mater. Chem. A 2014, 2, 19963–19968. [Google Scholar] [CrossRef]
Samples | Tp (°C) | ΔHm (J/g) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2 °C/min | 5 °C/min | 10 °C/min | 15 °C/min | 20 °C/min | 2 °C/min | 5 °C/min | 10 °C/min | 15 °C/min | 20 °C/min | |
OD | 59.2 | 60.5 | 62.1 | 63.5 | 64.8 | 245.5 | 246.3 | 246.1 | 245.3 | 244.9 |
OD/DMDBS/EG | 55.6 | 56.4 | 57.4 | 58.3 | 59.1 | 195.4 | 196.5 | 197.3 | 196.1 | 195.9 |
Sample | Activation Energy, E (KJ/mol) | Correlation Coefficient |
---|---|---|
OD | 373.138 ± 40.198 | 0.983 |
OD/DMDBS/EG | 584.905 ± 64.550 | 0.982 |
Code | ƒ(α) | Reaction Type |
---|---|---|
F1 | 1 − α | first-order reaction |
F2 | (1 − α)2 | second-order reaction |
Fn | (1 − α)n | nth-order reaction |
R2 | 2·(1 − α)1/2 | two-dimensional phase boundary reaction |
R3 | 3·(1 − α)2/3 | three-dimensional phase boundary reaction |
D1 | 1/2α | one-dimensional diffusion |
D2 | −1/ln(1 − α) | two-dimensional diffusion |
D3 | 1.5·(1 − α)1/3[(1 − α)−1/3 − 1) | three-dimensional diffusion (Jander’s type) |
D4 | 1.5/[(1 − α)−1/3 − 1] | three-dimensional diffusion (Ginstling–Brounstein type) |
B1 | α·(1 − α) | simple Prout–Tompkins equation |
Bna | αa·(1 − α)n | expanded Prout–Tompkins equation (na) |
C1-X | (1 − α)·(1 + Kcat·X) | first-order reaction with autocatalysis through the reactands, X X = a product in the complex model, frequently X = α. |
Cn-X | (1 − α)n(1 + Kcat·X) | nth-order reaction with autocatalysis through the reactands, X |
A2 | 2·(1 − α)[−ln(1 − α)]1/2 | two-dimensional nucleation |
A3 | 3·(1 − α)[−ln(1 − α)]2/3 | three-dimensional nucleation |
An | n·(1 − α)[−ln(1 − α)](n−1)/n | n-dimensional nucleation/nucleus growth according to Avrami/Erofeev |
Sample | Kinetic Parameters | ||
---|---|---|---|
OD | 1st Step | 2nd Step 2 | |
Mechanism, D3 | Mechanism, An | Fexp = 1.00 | |
Activation energy, E (KJ/mol) = 953.895 | Activation energy, E (KJ/mol) = 408.089 | Fcrit = 1.15 | |
Pre-exponential factor, lg(A/s−1) = 149.616 | Pre-exponential factor, lg(A/s−1) = 53.135 | Correlation coefficient, 0.993 | |
Dimension, n = 1.895 | |||
OD/DMDBS/EG | 1st Step 1 | 2nd Step 2 | |
Mechanism, Fn | Mechanism, An | Fexp = 1.00 | |
Activation energy, E (KJ/mol) = 306.872 | Activation energy, E (KJ/mol) = 844.761 | Fcrit = 1.13 | |
Pre-exponential factor, lg(A/s−1) = 48.905 | Pre-exponential factor, lg(A/s−1) = 133.475 | Correlation | |
Reaction order, n = 2.947 | Dimension, n = 0.798 | coefficient, 0.995 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Li, Y.; Cheng, X. Investigating the Phase Transition Kinetics of 1-Octadecanol/Sorbitol Derivative/Expanded Graphite Composite Phase Change Material with Isoconversional and Multivariate Non-Linear Regression Methods. Materials 2023, 16, 7024. https://doi.org/10.3390/ma16217024
Xu J, Li Y, Cheng X. Investigating the Phase Transition Kinetics of 1-Octadecanol/Sorbitol Derivative/Expanded Graphite Composite Phase Change Material with Isoconversional and Multivariate Non-Linear Regression Methods. Materials. 2023; 16(21):7024. https://doi.org/10.3390/ma16217024
Chicago/Turabian StyleXu, Jun, Yuanyuan Li, and Xiaomin Cheng. 2023. "Investigating the Phase Transition Kinetics of 1-Octadecanol/Sorbitol Derivative/Expanded Graphite Composite Phase Change Material with Isoconversional and Multivariate Non-Linear Regression Methods" Materials 16, no. 21: 7024. https://doi.org/10.3390/ma16217024
APA StyleXu, J., Li, Y., & Cheng, X. (2023). Investigating the Phase Transition Kinetics of 1-Octadecanol/Sorbitol Derivative/Expanded Graphite Composite Phase Change Material with Isoconversional and Multivariate Non-Linear Regression Methods. Materials, 16(21), 7024. https://doi.org/10.3390/ma16217024